Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Заземление экранированного кабеля. Заземление экрана кабеля из сшитого полиэтилена


Заземление и экранирование. - Сайт voltprofi!

Из ПУЭ

Глава 1.7. ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

1.7.93. Присоединение заземляющих и нулевых защитных проводников к частям оборудования, подлежащим заземлению или занулению, должно быть выполнено сваркой или болтовым соединением. Присоединение должно быть доступно для осмотра. Для болтового присоединения должны быть предусмотрены меры против ослабления и коррозии контактного соединения.

1.7.94. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или нулевой защитный проводник заземляемых или зануляемых частей электроустановки не допускается.

 Следует помнить что Россия стала, в начале ХХ1 века, членом МЭК. А там минимальное сечение главного эквипотенциального медного проводника не менее 10 мм кВ., медь.

 

Виды заземлений.

Одним из путей ослабления вредного влияния цепей заземления на системы автоматизации является раздельное выполнение заземлений для устройств, имеющих разную чувствительность к помехам или являющихся источниками помех разной мощности. Раздельное исполнение заземляющих проводников, позволяет выполнить их соединение с защитной землей в одной точке. При этом заземляющие проводники разных систем земель представляют собой лучи звезды, центром которой является контакт к шине защитного заземления здания, в наших случаях к главному эквипотенциальному проводнику, он идёт от шины заземления к комплексу оборудования. Благодаря такой топологии помехи "грязной" земли не протекают по проводникам "чистой" земли. Таким образом, несмотря на то, что системы заземления разделены и имеют разные названия, в конечном счете, все они соединены с Землей через систему защитного заземления. Исключение составляет только "плавающая" земля (см. ниже).

1. Защитное заземление. РЕ

От шины заземления здания, на корпус оборудования, медным многожильным проводом сечением не менее 10 мм.кв. .

2. Силовое заземление.

В системах автоматики могут использоваться электромагнитные реле, серводвигатели, электромагнитные клапаны и другие устройства, ток потребления которых, существенно превышает ток потребления модулей ввода-вывода и контроллеров. Цепи питания таких устройств выполняют отдельной парой свитых проводов (для уменьшения излучаемых помех), один из которых соединяется с шиной защитного заземления. Общий провод системы (обычно провод, подключенный к отрицательному выводу источника питания) является силовой землей.

3, 4. Аналоговая и цифровая земля.

Системы автоматики являются аналого-цифровыми. Поэтому одним из источников погрешностей аналоговой части является помеха, создаваемая цифровой частью системы. Для исключения прохождения помех через цепи заземления цифровую и аналоговую землю выполняют в виде несвязанных проводников, соединенных вместе только в одной общей точке. Для этого модули ввода-вывода и контроллеры имеют отдельные выводы аналоговой земли (AGND - "Analog GrouND") и цифровой (DGND - "Digital GrouND").

5. «Плавающая» земля.

"Плавающая" земля образуется в случае, когда общий провод небольшой части системы электрически не соединяется с шиной защитного заземления (т.е. с Землей). Типовыми примерами таких систем являются: батарейные измерительные приборы; системы автоматики автомобиля; самолета или космического корабля. "Плавающая" земля может быть получена и с помощью DC-DC или AC-DC преобразователей, если вывод вторичного источника питания в них не заземлен. Такое решение позволяет полностью исключить кондуктивные наводки через общий провод заземления. Кроме того, допустимое напряжение синфазного сигнала может достигать 300 Вольт и более; практически 100%-ным становится подавление синфазного сигнала, снижается влияние емкостных помех. Однако на высоких частотах токи через емкость на землю существенно снижают последние два достоинства.

Гальванически связанные цепи

   Техника заземления в системах автоматизации сильно различается для гальванически связанных и гальванически развязанных цепей. Большинство методов, описанных в литературе, относится к гальванически связанным цепям, доля которых в последнее время существенно уменьшилась в связи с резким падением цен на изолирующие DC-DCпреобразователи.

Общим правилом ослабления связи, через общий провод заземления, является деление земель на аналоговую, цифровую, силовую и защитную с последующим их соединением только в одной точке. При разделении заземлений, гальванически связанных цепей, используется общий принцип: цепи заземления с большим уровнем помех должны выполняться отдельно от цепей с малым уровнем помех, а соединяться они должны только в одной общей точке. Точек заземления может быть несколько, если топология такой цепи не приводит к появлению участков "грязной" земли в контуре, включающем источник и приемник сигнала, а также если в цепи заземления не образуются замкнутые контуры, по которым циркулирует ток, наведенный электромагнитной помехой.

ПРАВИЛЬНОЕ ЗАЗЕМЛЕНИЕ ЭКРАНА

    Для устранения паразитной емкостной связи и электростатических зарядов, используют электростатический экран в виде проводящей трубки (чулка), охватывающей экранируемые провода, а для защиты от магнитного поля используют экран из материала с высокой магнитной проницаемостью.

Рассмотрим заземление экранов при передаче сигнала по витой экранированной паре, поскольку этот случай наиболее типичен для систем автоматизации

 

Оплетку кабеля надо заземлять со стороны источника сигнала. Если источник сигнала не заземлен (например, термопара), то заземлять экран можно с любой стороны, т.к. в этом случае замкнутый контур для тока помехи не образуется.

ПРАВИЛЬНОЕ ЗАЗЕМЛЕНИЕ ЭКРАНА

  На частотах более 1 МГц увеличивается индуктивное сопротивление экрана и токи емкостной наводки создают на нем большое падение напряжения, которое может передаваться на внутренние жилы через емкость между оплеткой и жилами. Кроме того, при длине кабеля, сравнимом с длиной волны помехи (длина волны помехи при частоте 1 МГц равна 300 м, на частоте 10 МГц - 30 м) возрастает сопротивление оплетки, что резко повышает напряжение помехи на оплетке. Поэтому на высоких частотах оплетку кабеля надо заземлять не только с обеих сторон, но и в нескольких точках между ними. Эти точки выбирают на расстоянии 1/10 длины волны помехи одна от другой. При этом по оплетке кабеля будет протекать часть тока , передающего помеху в центральную жилу через взаимную индуктивность. Емкостной ток также будет протекать по пути, однако высокочастотная компонента помехи будет ослаблена. Выбор количества точек заземления кабеля зависит от разницы напряжений помехи на концах экрана, частоты помехи, требований к величине токов, протекающих через экран в случае его заземления.

В качестве промежуточного варианта можно использовать второе заземление экрана через емкость . При этом по высокой частоте экран получается заземленным с двух сторон, по низкой частоте - с одной. Это имеет смысл в том случае, когда частота помехи превышает 1 МГц, а длина кабеля в 10…20 раз меньше длины волны помехи, т.е. когда еще не нужно выполнять заземление в нескольких промежуточных точках. Величину емкости можно рассчитать по формуле. Например, на частоте 1 МГц конденсатор емкостью 0,1 мкФ имеет сопротивление 1,6 Ом. Конденсатор должен быть высокочастотным, с малой собственной индуктивностью.

ПРАВИЛЬНОЕ ЗАЗЕМЛЕНИЕ ЭКРАНА

   Для качественного экранирования в широком спектре частот используют двойной экран. Внутренний экран заземляют с одной стороны, со стороны источника сигнала, чтобы исключить прохождение емкостной помехи, а внешний экран уменьшает высокочастотный наводки.

Поскольку даже при правильном заземлении, но длинном кабеле, помеха все равно проходит через экран, то для передачи сигнала на большое расстояние или при повышенных требованиях к точности измерений, сигнал лучше передавать в цифровой форме или через оптический кабель.

Экран, защищающий от паразитных индуктивных связей, сделать гораздо сложнее, чем электростатический экран. Для этого нужно использовать материал с высокой магнитной проницаемостью и, как правило, гораздо большей толщины, чем толщина электростатических экранов. Для частот ниже 100 КГц можно использовать экран из стали или пермаллоя. На более высоких частотах можно также использовать алюминий и медь.

Заземление гальванически развязанных цепей

    Применение гальванической изоляции позволяет разделить аналоговую и цифровую землю, а это, в свою очередь, исключает протекание по аналоговой земле токов помехи от силовой и цифровой земли. Аналоговая земля может быть соединена с защитным заземлением через сопротивление.

   Монтаж панелей, шкафов автоматики должен учитывать всю вышеизложенную информацию. Однако заранее нельзя сказать однозначно, какие требования являются обязательными, какие - нет, поскольку набор обязательных требований зависит от требуемой точности измерений и от окружающей электромагнитной обстановки. Ниже на рисунке приведена правильная схема соединений.

    1. Используйте модули ввода-вывода только с гальванической развязкой.

2. Не применяйте длинных проводов от аналоговых датчиков. Располагайте модули ввода в непосредственной близости к датчику, а сигнал передавайте в цифровой форме. Используйте датчики с цифровым интерфейсом.

3. На открытой местности и при больших дистанциях используйте оптический кабель вместо медного.

4. Используйте только дифференциальные (не одиночные) входы модулей аналогового ввода.

    5. Используйте в пределах вашей системы автоматизации отдельную землю из медной шины. 6. Аналоговую, цифровую и силовую землю системы соединяйте только в одной точке. Если этого сделать невозможно, используйте медную шину с большой площадью поперечного сечения для уменьшения сопротивления между разными точками подключения земель. 7. Следите, чтобы при монтаже системы заземления случайно не образовался замкнутый контур. 8. Не используйте, по возможности, землю, как уровень отсчета напряжения при передаче сигнала.

9. Если провод заземления не может быть коротким или если по конструктивным соображениям необходимо заземлить две части гальванически связанной системы в разных точках, то эти системы нужно разделить с помощью гальванической развязки.

10. Цепи, изолированные гальванически, нужно заземлять через большое сопротивление, чтобы избежать накопления статических зарядов.

11. Экспериментируйте и пользуйтесь приборами для оценки качества заземления. Допущенные ошибки видны не сразу.

12. Пытайтесь идентифицировать источник и приемник помех, затем нарисуйте эквивалентную схему цепи передачи помехи с учетом паразитных емкостей и индуктивностей.

13. Пытайтесь выделить самую мощную помеху и в первую очередь защищайтесь от нее.

14. Цепи с существенно различающейся мощностью следует заземлять группами, так, чтобы все группы имели примерно одинаковую мощность.

15. Заземляющие проводники с большим током должны проходить отдельно от чувствительных проводников с малым измерительным сигналом. Провод заземления должен быть по возможности прямым и коротким.

16. Не делайте полосу пропускания приемника сигнала шире, чем это надо из соображений точности измерений.

17. Используйте экранированные кабели, экран заземляйте в одной точке, со стороны источника сигнала на частотах ниже 1 МГц и в нескольких точках - на более высоких частотах.

18. Для особо чувствительных измерений используйте "плавающий" батарейный источник питания.

RS-485

   Промышленная сеть на основе интерфейса RS-485 выполняется экранированной витой парой с обязательным применением модулей гальванической развязки. Для небольших расстояний (порядка 10 м) ,при отсутствии поблизости источников помех, экран можно не использовать. При больших расстояниях (стандарт допускает длину кабеля до 1,2 км) разница потенциалов земли, в удаленных друг от друга точках, может достигать несколько единиц и даже десятков вольт. Поэтому, чтобы предотвратить протекание по экрану тока, выравнивающего эти потенциалы, экран кабеля нужно заземлять только в одной точке (безразлично, в какой). Это также предотвратит появление замкнутого контура большой площади в цепи заземления, в котором за счет электромагнитной индукции может наводится ток большой величины при ударах молнии или коммутации мощных нагрузок. Этот ток, через взаимную индуктивность, наводит на центральной паре проводов э. д. с., которая может вывести из строя микросхемы драйверов порта.

При использовании неэкранированного кабеля, на нем может наводиться большой статический заряд (несколько киловольт) за счет атмосферного электричества, который может вывести из строя элементы гальванической развязки. Для предотвращения этого эффекта изолированную часть устройства гальванической развязки следует заземлить через сопротивление, например, 0,1...1 МОм ( показано штриховой линией).

Особенно сильно проявляются описанные выше эффекты в сетях Ethernet с коаксиальным кабелем, когда при заземлении в нескольких точках (или отсутствии заземления), во время грозы, выходят из строя сразу несколько сетевых Ethernet-плат.

В сетях Ethernet с малой пропускной способностью (10 Mбит/с), заземление экрана следует выполнять только в одной точке. В Fast Ethernet (100 Мбит/с) и Gigabit Ethernet (1 Гбит/с) заземление экрана следует выполнять в нескольких точках, пользуясь рекомендациями раздел "Экранирование сигнальных кабелей"

При прокладке кабеля на открытой местности нужно использовать все правила, описанные в разделе "Экранирование сигнальных кабелей"

   На взрывоопасных промышленных объектах (см. раздел "Автоматизация опасных объектов"), при монтаже цепей заземления многожильным проводом, не допускается применение пайки для спаивания жил между собой, поскольку вследствие хладотекучести припоя возможно ослабление мест контактного давления в винтовых зажимах.

Экран кабеля интерфейса RS-485 заземляется в одной точке, вне взрывоопасной зоны. В пределах взрывоопасной зоны он должен быть защищен от случайного соприкосновения с заземленными проводниками. Искробезопасные цепи не должны заземляться, если этого не требуют условия работы электрооборудования (ГОСТ Р 51330.10, раздел "Экранирование сигнальных кабелей").

Искробезопасные цепи должны быть смонтированы таким образом, чтобы наводки от внешних электромагнитных полей (например, от расположенного на крыше здания радиопередатчика, от воздушных линий электропередачи или близлежащих кабелей для передачи большой мощности) не создавали опасного напряжение или тока в искробезопасных цепях. Это может быть достигнуто экранированием или отдалением искробезопасных цепей от источника электромагнитной наводки.

При прокладке в общем пучке или канале кабели с искроопасными и искробезопасными цепями, должны быть разделены промежуточным слоем изоляционного материала или заземленной металлической перегородкой. Никакого разделения не требуется, если используются кабели с металлической оболочкой или экраном.

Заземленные металлические конструкции не должны иметь разрывов и плохих контактов между собой, которые могут искрить во время грозы или при коммутации мощного оборудования.

На взрывоопасных промышленных объектах используются преимущественно электрические распределительные сети с изолированной нейтралью, чтобы исключить возможность появления искры при коротком замыкании фазы на землю и срабатывания предохранителей защиты при повреждении изоляции.

Для защиты от статического электричества используют заземление, описанное в разделе "Статическое электричество". Статическое электричество может быть причиной воспламенения взрывоопасной смеси. Например, при емкости человеческого тела 100…400 пФ и потенциале заряда 1 кВ, энергия искрового разряда с тела человека будет равна 50…200 мкДж, что может быть достаточно для воспламенения взрывоопасной смеси группы IIC (60 мкДж).

   Цепи питания двигателей с импульсным управлением, двигателей сервоприводов, исполнительных устройств с ШИМ-управлением, должны быть выполнены витой парой для уменьшения магнитного поля, а также экранированы для снижения электрической компоненты излучаемой помехи. Экран кабеля должен быть заземлен с одной стороны. Цепи подключения датчиков, таких систем, должны быть помещены в отдельный экран и по возможности пространственно отдалены от исполнительных устройств.

voltprofi.jimdo.com

Заземление экранированного кабеля | Полезные статьи

Заземление кабелей — обязательная процедура, входящая в комплекс мероприятий по строительству кабельных линий электропередач и связи. Выполняется заземление с целью защиты самого кабеля и электрооборудования, подключенного к кабельной линии, от токов короткого замыкания и различных внешних воздействий (электромагнитные поля, молнии, блуждающие тока и т. д.). Вторая важная цель устройства систем заземления — защита человека от поражения электрическим током.

Существует множество терминов, определений, связанных с системами заземлений, а также методов и способов их построения по отношению к различным кабелям, электроустановкам и т. д. — подробная информация приведена в главе 1.7 ПУЭ 7 (Правила устройства электроустановок) от 2002 года. Здесь будут рассмотрены основные моменты заземления контрольных экранированных кабелей, кабелей связи (включая оптические) и силовых кабелей.

Заземление силовых высоковольтных кабелей

Заземление экранированного кабеля напряжением от 6 кВ и выше может производиться по схеме двухстороннего или одностороннего заземления экрана. Оба метода имеют свои преимущества и недостатки.

Преимуществом двухстороннего заземления является простота монтажа. Заключается он в присоединении экрана к контуру заземления — нет необходимости в использовании каких-либо дополнительных средств или оборудования. Данная схема заземления предполагает, что экран кабеля имеет потенциал земли, а значит, в замкнутом контуре возникает ток. Это ведет к существенным потерям мощности и ухудшению температурного режима кабеля, что, в свою очередь, может стать следствием снижения его срока эксплуатации.

При одностороннем заземлении к заземляющему устройству подключается только один конец экрана. В этом случае отсутствует путь для протекания токов, что не вызывает существенных потерь мощности. Незначительные потери могут наблюдаться из-за возникновения вихревых токов, но они не определяют температурный режим и, как следствие, не снижают срок службы кабеля.

Однако схема одностороннего заземления экранированного кабеля требует учитывать следующие факторы:

•    Возникновение импульсных перенапряжений может стать причиной снижения эффективности оболочки кабеля. Если значение перенапряжения превысит электрическую прочность оболочки, в конструкцию кабеля может просочиться влага (при подземной прокладке, а также для кабелей без герметизации).•    Данная схема заземления, как правило, требует использования дополнительного оборудования, включая концевые муфты с изолированным экраном, защитные аппараты, устанавливаемые на незаземленном конце кабельного экрана. Все это потребует дополнительные финансовых и трудозатрат при построении системы заземления.•    Существует риск возникновения на незаземленном конце экрана наведенного потенциала (пропорционален току в жиле кабеля), что может стать причиной поражения током обслуживающего персонала.

Таким образом, одностороннее заземление требует использования спецоборудования и принятия дополнительных мер по обеспечению безопасности работы кабельной линии, что увеличивает стоимость монтажных работ и последующего обслуживания.

Если экранированный кабель имеет броню, тогда оба этих компонента должны быть объединены в единую цепь, а затем подключены к корпусам соединительных муфт. На кабелях напряжением от 6 кВ и более с оболочкой из алюминия подключение оболочки и брони к земле производится при использовании отдельных проводников (сечения проводников подбирается по требованиям, приведенным в разделах 1.7.76–1.7.78 ПУЭ).

При использовании на опоре конструкции комплекта разрядников броня, экран и соединительная муфта подключаются к заземляющему устройству разрядника. В данном случае не допускается заземление лишь металлической оболочки.

Как заземлить экранированный кабель управления

Заземление контрольных экранированных кабелей и кабелей связи производится не только в целях обеспечения безопасности, но и для устранения электромагнитных помех. В отличие от силовых, контрольные кабели и кабели связи также служат и для передачи информации или аналоговых сигналов. Величина электромагнитных помех может достигать несколько киловольт, подача которых на входы управляемого электрооборудования может привести к самым различным последствиям, вплоть до выхода установок из строя.

Экранированный кабель также может быть заземлен — как с одной, так и с двух сторон. Однако в данном случае предпочтение отдается именно двухстороннему заземлению экрана. Такая схема эффективней устраняет влияние электрических и магнитных полей как высокой, так и низкой частоты, предотвращая накопление напряжения помех свыше установленных норм.

Как и в предыдущем случае, двухстороннее заземление требует особого подхода к проектированию. Здесь важно учитывать, что при коротком замыкании или ударах молнии на заземляющем устройстве существует вероятность увеличения потенциала, что может привести к увеличению тока на экране и термическому повреждению кабеля. Для снижения потенциала используются различные методы: например, путем прокладки вдоль кабеля параллельных заземляющих проводников или применение замкнутых систем заземления.

Как заземлить экранированный кабель оптический

Согласно РД 45.155 заземление оптических кабелей (ОК) должно осуществляться на вводах в стационарные сооружения, необслуживаемые регенерационные пункты (НРП) и любые технические помещения, в которых устанавливаются волоконно-оптические линии передачи (ВОЛП). Заземлению подлежат металлические элементы кабеля — броня, металлическая оболочка и/или трос (зависит от конструкции кабеля).

Металлические компоненты ОК подключаются на заземляющие устройства отдельными проводами сечением не менее 4 мм2. В качестве устройств заземления используются специальные заземляющие щитки, устанавливаемые в технических помещениях. При отсутствии щитков допускается заземление металлических компонентов кабеля на специальные заземляющие клеммы оконечных оптических устройств (коммутаторы, серверы и т. п.).

Компания «Кабель.РФ» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку экранированного кабеля по выгодным ценам.

 

cable.ru

Кабели 6–10 кВ с изоляцией из сшитого полиэтилена. Требования к прокладке. - Прочее - Статьи - Материалы

В настоящее время в электрические сети среднего напряжения различного назначения всё шире внедряются силовые кабели с изоляцией из сшитого полиэтилена (XLPE, СПЭ). Применение в кабелях такой изоляции имеет определенные преимущества по сравнению с бумажно-пропитанной изоляцией. К этим преимуществам следует прежде всего отнести более высокие значения пропускной способности, сниженные себестоимость изделия и эксплуатационные затраты.

Немаловажным преимуществом является также и отсутствие жидких компонентов в конструкции кабелей, что не накладывает дополнительных требований по перепаду высот вдоль трассы их прокладки.

Надежная эксплуатация этих кабелей зависит в том числе и от условий их прокладки. Именно способы прокладки в большой мере определяют тепловой режим эксплуатации кабелей, а, следовательно, и надежность как самого кабеля, так и электропитания потребителей.

Вместе с тем проектирующими организациями уделяется недостаточное внимание условиям прокладки кабелей с изоляцией из СПЭ, что в ряде случаев приводит к перегреву и даже к возгоранию кабелей в нормальном эксплуатационном режиме. Этот вопрос рассматривают ученые из Новосибирска.

Кира Кадомская, д.т.н., профессорЮрий Лавров, к.т.н.Семен Кандаков, магистрантНовосибирский государственный технический университет

Наиболее распространенными в сетях 6–10 кВ в настоящее время являются кабели с СПЭ-изоляцией (более часто их называют кабелями с пластмассовой изоляцией (КПИ)) в однофазном исполнении (рис. 1).

Такое исполнение конструкции кабеля обусловлено требуемыми большими строительными длинами, легкостью монтажа, а также возможностью выполнения кабелей с большими номинальными сечениями жилы. Однофазная конструкция КПИ накладывает определенные ограничения на способы их прокладки в отличие от кабелей традиционных трехфазных конструкций с бумажно-пропитанной изоляцией. Например, в [1] оговариваются допустимые температурные условия эксплуатации кабеля при различных способах его прокладки, а в [2,3] подчеркиваются особенности прокладки КПИ в местах, требующих их механической защиты с помощью труб: при пересечении инженерных сооружений, естественных препятствий и т.п.

Невыполнение регламента прокладки КПИ в этих случаях может привести по крайней мере к двум негативным явлениям: к термическому разрушению кабеля при его эксплуатации в номинальном режиме либо локальному снижению электрической прочности СПЭ-изоляции на участке кабеля, заключенного в трубу. Деградация CПЭ-изоляции при комбинированном воздействии электрического и теплового полей больше сказывается на снижении электрической прочности СПЭ при высокочастотных импульсных перенапряжениях, которые, например, могут инициировать вакуумные выключатели. Таким образом, неправильное проектирование прокладки КПИ однофазного исполнения на «особых участках» может с течением времени спровоцировать аварийную ситуацию, связанную с тепловым разрушением кабеля или его электрическим пробоем.

О тепловом режиме эксплуатации кабелей

Перегрев кабеля может быть вызван выделением тепла как внутри конструкции кабеля, так и в окружающем его пространстве. Источником теплового поля внутри и снаружи кабеля являются электрические токи, протекающие по всем металлическим элементам конструкции: по жиле кабеля и экрану из медных проволок.

Следует отметить, что в ряде проектов на определенных участках кабельной трассы (зачастую под дорогами) предполагается пофазная прокладка кабелей в металлических трубах. При такой прокладке дополнительным источником тепла являются токи Фуко, протекающие по металлической трубе. Так как длина защитных стальных труб обычно на порядок и более меньше общей длины кабельной линии, то при расчете токов в экранах можно с большой степенью точности пренебречь наличием стальной трубы. Проведенные расчеты подтвердили это предположение (рис. 2).

Рис. 1Конструкция кабеля с СПЭ-изоляцией однофазного исполнения

Рис. 2Направления токов в металлических элементах конструкции при пофазной прокладке кабеля в трубе

Токи в экранах кабелей в общем случае прокладки трех фаз кабеля

Рассмотрим общий случай прокладки трех фаз кабельной линии, экраны которых заземляются по концам его строительных участков (рис. 3). Расчеты производились как с помощью аналитической методики, основанной на анализе электромагнитного поля в соответствующих электрических схемах, так и на основе численного анализа поля с помощью векторного метода конечных элементов (ВМКЭ). При использовании численного метода использовалось понятие векторного магнитного потенциала, описывающего распределение магнитного поля в проводящей среде и в диэлектрике.

На рис. 4 приведены зависимости отношений токов в экранах к токам в жилах от расстояния между фазами кабеля при горизонтальной прокладке трех фаз в грунте. Рассмотрен кабель 10 кВ фирмы Nexans с изоляцией из сшитого полиэтилена типа N2XSY10 1•500. Токопроводящая жила и экран выполнены из меди. Сечение токопроводящей жилы 500 мм2, сечение экрана 35 мм2, номинальный ток при прокладке в земле 745 А, толщина изоляции по жиле – 4 мм, толщина ПВХ оболочки – 2,5 мм. Внешний диаметр кабеля – 45 мм. Заглубление центров фаз кабелей – 0,7 м.

Этот и аналогичные расчеты показали, что токи в экранах кабелей однофазного исполнения могут составлять значительную величину – начиная с 10–15% от тока в жиле при расположении фаз кабеля в непосредственной близости друг от друга и до 40–50% при значительном удалении фаз. Следовательно, при пофазной прокладке фаз в стальной трубе токи в экранах являются существенным дополнительным источником тепла.

Рис. 3Заземление экранов по концам строительного участка КЛ

Рис. 4Зависимость отношения токов в экранах к токам в жилах от расстояния между центрами фаз

Тепловыделение в стальной трубе

Произведенные расчеты показали, что при прокладке стальной трубы в грунте вихревые токи вследствие существенно большей проводимости трубы, выполненной из конструкционной стали (107См/м), замыкаются лишь по самой трубе. Тепловыделение в ней, определенное с помощью численного расчета теплового поля от вихревых токов при прокладке фазы кабеля с параметрами, указанными выше, и номинальном токе в нем составило 129 Вт/м.

Распределение температуры в плоскости сечения кабеля, проложенного в стальной трубе

При решении уравнения теплопроводности в рассматриваемой системе (однофазный кабель в трубе) были приняты следующие правомочные допущения:

  • поверхность земли принята изотермической при заданной температуре,
  • на границе расчетной области тепловой поток принят равным нолю,
  • на границах сред с различными значениями коэффициента теплопроводности принималось условие непрерывности температурного поля (T1 = T2) .

При проведении расчетов учитывались температурные зависимости теплофизической теплопроводности воздуха и электропроводности медной жилы и экрана. Распределение температуры в плоскости сечения конструкции приведено на рис. 5.

Рис. 5Распределение температуры в плоскости сечения фазы кабеля, проложенной в металлической трубе

Рис. 6Последствие прокладки фазы кабеля с пластмассовой изоляци- ей в стальной трубе

Рис. 7Температурное поле в сечении конструкции при прокладке трех фаз кабеля в стальной трубе

Из рисунка видно, что температура жилы в рассматриваемой конструкции составляет величину порядка 150ОС, что значительно выше длительно допустимой температуры нагрева изоляции из сшитого полиэтилена (90ºС).

Правомочность приведенных результатов подтверждается непосредственными измерениями температуры трубы при повреждении кабеля длиной 110 м, связывающего генераторы теплоэлектростанции с КРУ (длина стальных труб с проложенными под дорогой пофазно кабелями составляла 13 м). При этих измерениях температура стальной трубы оказалась равной 140–145ОС. На рис. 6 приведена фотография поврежденной фазы кабеля.

Избежать повреждения кабеля, проложенного пофазно в стальной трубе, можно, нагрузив его не более чем на 50–60% от номинального тока. Очевидно, что такая недогрузка кабелей вряд ли допустима.

Одной из возможных мер уменьшения рабочей температуры кабелей при прокладке их в стальных трубах является расположение всех трех фаз вплотную в вершинах правильного треугольника в общей стальной трубе.

Распределение температурного поля при прокладке трех фаз, расположенных в стальной трубе в вершинах правильного треугольника, приведено на рис. 7. Из рисунка видно, что при такой прокладке температура наиболее нагретой жилы составила 85ОC, что не превышает допустимого значения.

Можно заметить, что в наихудших условиях с точки зрения температуры находится верхняя фаза (фаза А на рис. 7), так как через неё проходит тепловой поток от нижних фаз.

Заключение

  1. Пофазная прокладка кабелей среднего напряжения в стальных трубах недопустима из-за появления дополнительного источника тепла в виде вихревых токов в стальной трубе, что приводит к повышению температуры в конструкции, существенно превышающей допустимую.
  2. Снизить тепловыделение в стальной трубе можно путем прокладки трех фаз однофазных кабелей вплотную, в вершинах правильного треугольника в общей стальной трубе. Тепловыделение в трубе при этом становится соизмеримым с тепловыделением в жиле и экране кабеля, а максимальная рабочая температура не превышает предельно допустимых значений.
  3. Если это не требуется по условиям механической прочности, то следует по возможности избегать прокладки кабелей в трубах из ферромагнитных материалов, а применять отрезки неметаллических труб (например, асбоцементные, керамические, пластмассовые или из иного немагнитного материала).

Литература

  1. Кабели силовые с изоляцией из сшитого полиэтилена на напряжение 10, 20, 35 кВ. Технические условия. ТУ 16.К71-335-2004. (ОАО ВНИИКП).
  2. Инструкция по прокладке кабелей силовых с изоляцией из сшитого полиэтилена на напряжение 10, 20 и 35 кВ. RUKAB/ID 23-2-019 (ABB Москабель).
  3. Инструкция. Прокладка силовых кабелей на напряжение 10 кВ с изоляцией из сшитого полиэтилена. ИМ СК-20-03 (Камкабель).

Источник информации:ж. «Новости электротехники», № 6(36), 2005 г.

Источник: http://www.news.elteh.ru

energybk.ucoz.ru