Для выполняения расчета теплопотерь через пол и потолок на потребуются следующие данные: Площадь пола S пола =6х6=36 м2 Далее выполняем расчет теплосопротивления пола. Т.к. полы многослойные, то рассчитаем теплосопротивление каждого слоя: R досок=B/K=0,032 м/0,15 Вт/мК =0,21 м²х°С/Вт, где B - толщина материала, К - коэффициент теплопороводности. R дсп=B/K=0,01м/0,15Вт/мК=0,07м²х°С/Вт R утепл=B/K=0,05 м/0,039 Вт/мК=1,28 м²х°С/Вт Суммарное значение R пола=0,21+0,07+1,28=1,56 м²х°С/Вт Учитывая, что в подполье температура зимой постоянно держится около +8°С, то dT необходимое для расчета теплопотерь равно 22-8 =14 градусов. Теперь есть все данные для расчета теплопотерь через пол: Q пола= SхdT/R=36 м²х14 градусов/1,56 м²х°С/Вт=323,07 Вт•ч (0,32 кВт•ч) Площадь потолка такая же как и пола S потолка = 36 м2 При расчете теплового сопротивления потолка мы не учитываем деревянные щиты, т.к. они не имеют плотного соединения между собой и не выполняют роль теплоизолятора. Поэтому тепловое сопротивление потолка: R потолка = R утеплителя = толщина утеплителя 0,15 м/теплопроводность утеплителя 0,039 Вт/мК=3,84 м²х°С/Вт Производим расчет теплопотерь через потолок: Q потолка =SхdT/R=36 м²х52 градуса/3,84 м²х°С/Вт=487,5 Вт•ч (0,49 кВт•ч) Назад: Расчет теплопотерь через окна и дверь. Перед тем, как начать строить дом, нужно купить проект дома – так говорят архитекторы. Надо купить услуги профессионалов – так говорят строители. Необходимо купить качественные строительные материалы – так говорят продавцы и производители стройматериалов и утеплителей. И вы знаете, в чем-то они все немножечко правы. Однако никто кроме вас не будет настолько заинтересован в вашем жилье, чтобы учесть все моменты и свести воедино все вопросы по его строительству. Один из самых важных вопросов, которые стоит решить на этапе планирования строительства, это теплопотери дома. От расчета теплопотерь будут зависеть и проект дома, и его строительство и то, какие стройматериалы и утеплители вы будете закупать. Не бывает домов с нулевыми теплопотерями. Для этого дом должен был бы плыть в вакууме со стенами в 100 метров высокоэффективного утеплителя. Мы живем не в вакууме, и вкладываться в 100 метров утеплителя не хотим. А значит, у нашего дома будут теплопотери. Пусть будут, лишь бы они были разумными. Посмотрим, какие теплопотери можно считать разумными, и куда уходит тепло из дома в холодный период года. Теплопотери через стены – об этом думают сразу все хозяева. Считают теплосопротивление ограждающих конструкций, утепляются до достижения нормативного показателя R и на этом заканчивают свою работу по утеплению дома. Конечно, теплопотери через стены дома надо считать – стены обладают максимальной площадью из всех ограждающих конструкций дома. Но они – не единственный путь для тепла наружу. Утепление дома — единственный способ снизить теплопотери через стены. Для того, чтобы ограничить теплопотери через стены, достаточно утеплить дом 150 мм высокоэффективного утеплителя для европейской части России или 200-250 мм того же утеплителя для Сибири и северных регионов. И на этом можно оставить в покое этот показатель и перейти к другим, не менее важным. Холодный пол в доме – это беда. Теплопотери пола, относительно такого же показателя для стен, важнее примерно в 1,5 раза. И именно во столько же толщина утеплителя в полу должна быть больше толщины утеплителя в стенах. Теплопотери пола становятся значимыми, когда под полом первого этажа у вас холодный цоколь или просто уличный воздух, например, при винтовых сваях. Утепляете стены — утепляйте и пол. Если в стены вы закладываете 200 мм базальтовой ваты или пенопласта, то в пол вам придется заложить 300 миллиметров настолько же эффективного утеплителя. Только в этом случае можно будет ходить по полу первого этажа босиком в любую, даже самую лютую, зиму. Если же у вас под полом первого этажа отапливаемый подвал или хорошо утепленный цоколь с отлично утепленной широкой отмосткой, то утеплением пола первого этажа можно пренебречь. Мало того, в такой подвал или цоколь стоит нагнетать нагретый воздух с первого этажа, а лучше со второго. А вот стены подвала, его плита должны быть утеплены максимально, чтобы не «обогревать» грунт. Конечно, постоянная температура грунта +4С, но это на глубине. А зимой вокруг стен подвала все те же -30С, как и на поверхности грунта. Все тепло идет вверх. И там оно стремится выйти наружу, то есть покинуть помещение. Теплопотери через потолок в вашем доме – это одна из наибольших величин, которая характеризует уход тепла на улицу. Толщина утеплителя на потолке должна быть в 2 раза больше толщины утеплителя в стенах. Монтируете 200 мм в стены – монтируйте 400 мм на потолок. В этом случае вам будет гарантировано максимальное теплосопротивление вашего теплового контура. Потолок нуждается в самом толстом утеплителе. Что у нас получается? Стены 200 мм, пол 300 мм, потолок 400 мм. Считайте, что вы сэкономите на любом энергоносителе, которым будете отапливать свой дом. Что совершенно невозможно утеплить, так это окна. Теплопотери окон – самая большая величина, которой описывается количество тепла, покидающего ваш дом. Какими бы вы не сделали свои стеклопакеты – двухкамерными, трехкамерными или пятикамерными, теплопотери окон все равно будут гигантскими. Как сократить теплопотери через окна? Во-первых, стоит сократить площадь остекления во всем доме. Конечно, при большом остеклении дом выглядит шикарно, и его фасад напоминает вам о Франции или Калифорнии. Но тут уже что-то одно – или витражи в половину стены или хорошее теплосопротивление вашего дома. Хотите снизить теплопотери окон — не планируйте большую их площадь. Во-вторых, следует хорошо утеплять оконные откосы – места прилегания переплетов к стенам. И, в-третьих, стоит использовать для дополнительного сбережения тепла новинки строительной отрасли. Например, автоматические ночные теплосберегающие ставни. Или пленки, отражающие тепловое излучение обратно в дом, но свободно пропускающие видимый спектр. Стены утеплены, потолок и пол тоже, ставни поставлены на пятикамерные стеклопакеты, вовсю раскочегарен газовый котел. А в доме все равно прохладно. Куда же продолжает уходить тепло из дома? Настало время искать щели, щелки и щелочки, куда уходит тепло из дома. Во-первых, система вентиляции. Холодный воздух приходит по приточной вентиляции в дом, теплый воздух покидает дом по вытяжной вентиляции. Чтобы уменьшить теплопотери через вентиляцию, можно установить рекуператор – теплообменник, забирающий тепло у выходящего теплого воздуха и нагревающий входящий холодный воздух. Один из способов снизить теплопотери дома через систему вентиляции — установить рекуператор. Во-вторых, входные двери. Чтобы исключить теплопотери через двери, следует смонтировать холодный тамбур, который будет буфером между входными дверями и уличным воздухом. Тамбур должен быть относительно герметичным и необогреваемым. В-третьих, стоит хотя бы раз посмотреть в морозы на свой дом в тепловизор. Выезд специалистов стоит не такие большие деньги. Зато вы будете иметь на руках «карту фасадов и перекрытий», и будете четко знать, какие еще меры предпринять для того, чтобы снизить теплопотери дома в холодный период. dompraktika.ru Энергосбережение сейчас наиболее популярная тема в интернете. Еще бы, ведь экономить хочет каждый, а тем более в нынешних экономических условиях. Расчет потерь тепла при этом играет наиболее важную роль. Теплопотери в наиболее простом понимании это количество тепла, которое теряется помещением, домом или квартирой. Измеряются они в Вт. Возникают тепловые потери в доме из-за разницы внешних и внутренних температур воздуха. Содержание статьи: В переходной и холодный период года температура на улицах падает, и возрастает разница температур внутреннего воздуха и воздуха на улице. И как уже мы упоминали, Второй закон термодинамики никто не отменял, поэтому тепло с ваших домов и квартир стремится его покинуть и обогреть холодную окружающую среду. Для снижения этих утрат тепла, делается утепление домов в различных видах от пенопласта и вентилируемых фасадов до современных теплоизоляционных материалов в виде шпаклевки. Главной же задачей в нашей профессии является поддержание в помещении комфортных параметров микроклимата. И в первую очередь, мы рассчитываем теплопотери для их компенсации. Когда же делают расчет потерь тепла в доме? Расчет теплопотерь обязателен при проектировании систем отопления, систем вентиляции, воздушных отопительных систем. Расчетные температуры берут из нормативных документов. Значение внешней температуры воздуха отвечает температуре наружного воздуха наиболее холодной пятидневки. Внутреннюю температуру берут или ту, которую желаете, или из норм, для жилых помещений это 20+-2°С. Исходными данными для расчета служат: внешняя и внутренняя температура воздуха, конструкция стен, пола, перекрытий, назначение каждого помещения, географическая зона строительства. Все тепловые потери на прямую зависят от термического сопротивления ограждающих конструкций, чем оно больше, тем меньше теплопотери.Теплопотери дома – 8 уязвимых мест на тепловизоре. Теплопотери через потолок
Расчет теплопотерь через пол и потолок
Содержание: (скрыть)
Расчет теплопотерь через пол
Расчет теплопотерь через потолок
Теплопотери дома – куда реально уходит тепло?
Теплопотери через стены
Теплопотери пола
Теплопотери через потолок
Теплопотери окон
Куда уходит тепло из дома?
Теплопотери в домах, их подробный правильный расчет
Зачем делать расчет теплопотерь?
Для обеспечения комфортных условий пребывания людей в помещении нужно чтобы было правдивым уравнение теплового баланса
Qп+ Qо+ Qс+ Qк= Qср+ Qос+ Qпр+ Qлюд,
где Qп–теплопотери через пол, Qо–теплопотери через окна, Qс–теплопотери через стену, Qк- теплопотери через крышу, Qср–теплопоступления от солнечной радиации, Qос–теплопоступления от отопительных систем, Qпр–теплопоступления от приборов, Qлюд–теплопоступления от людей.
На практике же, уравнение упрощается и все утраты компенсирует система отопления, независимо водяная или воздушная.
Получив исходные данные, проектировщики начинают расчет. Рассмотрим основные виды тепловых потерь и формулы их расчета. Теплопотери бывают: через стены, через пол, через окна, через крышу, через вентиляционные шахты и дополнительные потери тепла. Термическое сопротивление для всех конструкций рассчитывается по формуле
Rст =1/ αв+Σ(δі / λі)+1/ αн,
где αв – коэффициент теплоотдачи внутренней поверхности ограждения, Вт/ м2·оС;λі и δі – коэффициент теплопроводности для материала каждого слоя стены и толщина этого слоя в м;αн – коэффициент теплоотдачи внешней поверхности ограждения, Вт/ м2·ос;
Коэффициенты α берутся из норм, и разные для стен и перекрытий.
И так, начнем:
На них наибольшее влияние имеет конструкция стен. Рассчитываются по формуле: Коэф. n-поправочный коэффициент. Зависит от материала конструкций, и принимается n=1 если конструкции из штучных материалов,и n=0,9 для чердака, n=0,75 для перекрытия подвала.
Пример: Рассмотрим теплопотери сквозь кирпичную стену 510 мм с утеплителем минеральной ватой 100 мм и декоративным финишным шаром 30 мм. Внутренняя температура воздуха 22ºС, наружная -20ºС. Высотой пусть будет 3 м и длиной 4 м. В комнате одна внешняя стена, размещение на Юг, местность не ветреная, без внешних дверей. Для начала необходимо узнать коэффициенты теплопроводности этих материалов. Из размещенной выше таблицы узнаем: λк =0,58 Вт/мºС, λут =0,064 Вт/мºС, λшт =0,76 Вт/мºС. После этого рассчитывается термическое сопротивление ограждающей конструкции:
Rст=1/ 23 +0,51/0,58+0,1/0,064+0,03/0,76+ 1/ 8,6 = 2,64 м2 ºС/Вт.
Для нашей местности такого сопротивления недостаточно и дом нужно утеплить лучше. Но сейчас не об этом. Расчет теплопотерь:
Q=1/R·FΔt·n·β=1/2,64·12·42·1·(10/100+1)=210Вт.
ß- это дополнительные потери тепла. Далее мы распишем их значение и станет ясно, откуда взялось число 10 и зачем делить на 100.
Здесь все проще. Расчет термического сопротивления не нужен, ведь в паспорте современных окон он уже указан. Теплопотери через окна рассчитываются по той же схеме, что и через стены. Для примера рассчитаем потери через энергосберегающие окна с термическим сопротивлением Rо= 0,87 (м2°С/Вт) размером 1,5*1,5 с ориентацией на Север. Q=1/0,87·2,25·42·1·(15/100+1)=125 Вт.
К теплопотерям через перекрытия относят отвод тепла через крышные и половые перекрытия. В основном это делается для квартир, где и пол и потолок представляет собой железобетонную плиту. На последнем этаже учитываются только потери сквозь потолок, а на первом лишь через подвальное перекрытие. Это обусловлено тем, что во всех квартирах принимается одинаковая температура воздуха, и теплоотдачу от квартиры к квартире не берут во внимание. Недавние исследования показали, что через не утепленные узлы примыкания перекрытий к ограждающим конструкциям идут большие потери тепла. Определение утечки тепла через перекрытие такое же как и для стены, но не учитываются дополнительные теплопотери. Коэффициент α берется другой: α вн =8,7 Вт/(м 2·К) α вн =6 Вт/(м2·К), разница температур также, ведь в подвале или на крытом чердаке температура принимается в пределах 4-6ºС. Не будем расписывать расчет термического сопротивления для перекрытия, ведь он определяется по той же формуле Rст = 1/ αв + Σ ( δі / λі ) + 1/ α. Возьмем перекрытие с сопротивлением 4,95 и примем воздух на чердаке +4ºС, площадь потолка 3х4м, внутри 22ºС. Подставляем в формулу и получаем:Q=1/R·FΔt·n·β=1/4,95·12·18·0,9= 40 Вт.
Он немного сложнее нежели через перекрытие. Теплопотери рассчитываются по зонам. Зоной называют полосу пола шириной 2 м, параллельно внешней стене. Первая зона находится непосредственно возле стены, здесь происходит больше всего потерь тепла. За ней последуют вторая и другие зоны, до центра пола. Для каждой зоны рассчитывается свой коэффициент теплопередачи. Для упрощения вводится понятие удельного сопротивления: для первой зоны R1=2,15 (м2°С/Вт), для второй R2=4,3 (м2°С/Вт), для третьей R3=8,6 (м2°С/Вт)
Пример Есть комната в которой пол на грунте, размер пола 6х8 м Температуры все те же. Сначала разделим пол на зоны. У нас их получилось две. Находим площадь каждой зоны. У нас это 20 м2 для первой зоны и 8 м2 для второй. Затем задаемся условными сопротивлениями R1=2,15 (м2°С/Вт), R2=4,3 (м2°С/Вт), подставляем в формулу: Q=(F1/R1+F2/R2+F3/R3)(tвт — tвн)·n=(20/2,15+8/4,3)·42·1= 470 Вт.
Учитываются только для стен и окон, то есть конструкций которые напрямую соприкасаются с окружающей средой. Существует четыре вида дополнительных потерь тепла: на ориентацию, на ветреность, на количество стен и наличие внешних дверей. Выражаются они в процентах и в последствии переводятся в коэффициент дополнительных теплопотерь. Если помещение ориентированно на Север, Восток, Северо-Восток, Северо-Запад дополнительные потери тепла составляют 10%, когда на Юг, Запад, Юго-Запад, Юго-Восток, додаются 5%. Если здание находится в ветреной местности, додаются еще 10% тепловых потерь,а когда в защищенной от ветров местности только 5%. Если в помещении есть две внешние стены, то дополнительные потери составляют 5%, когда только одна — дополнительных потерь нет. Если в наружной стене есть дверь, можно рассчитать убыток сквозь нее, но проще добавить 60% если двери тройные, 80% когда двойные двери и 95% если они одинарные. Например: Комната имеет две внешние стены, размещенная в ветреной местности, одна стена выходит на Юг, вторая на Север, дверей нету. Тогда дополнительные потери составляют 10%+5% на ориентацию +10% на ветер +5% так как две стены. И того 30%, чтобы добавить их к основным теплопотерям нужно перевести в коэффициент β =30% + 100% =30/100 +1 =1,3 и подставляем в общую формулу.
Не учитываются, если проектируется воздушное отопление или используется вентустановка с подогревом воздуха, так как воздух в помещение поступает уже теплый, и на его нагрев не тратится тепло. Но если установка без подогрева, необходимо учесть расход тепла на нагрев входящего воздуха. Упрощенная формула выглядит так:
Q=0,337·V·Δt
где V — бьем помещения в м3, Δt — разница внешней и наружной температур.
Сума всех потерь тепла и составляет общие потери помещения.
Сам процесс расчета тепловых потерь дома занимает довольно много времени, поэтому для себя мы создали шаблон в Excel, с помощью которого делаем расчеты. Решили с вами поделиться и использовать его можно перейдя по ссылке. Здесь же распишем инструкцию пользования.
Нужно заполнить исходные данные: номер помещения (если вам нужно), его название и температура внутри, название ограждающих конструкций и их ориентация, размеры конструкций. Вы увидите, что площадь считается сама. Если хотите отнимать площадь окна от стен, нужно корректировать формулы, так как мы не знаем где у вас будут записаны окна. У нас площади отнимаются. Также нужно заполнить коэффициент теплопередачи 1/R, разницу температур и поправочный коэффициент. К сожалению, их заполняют вручную. В примере у нас кабинет с тремя внешними стенами в одной стене два окна, в другой нет окон и третья имеет одно окно. Конструкции стен будет как в примере, где мы рассчитывали R, поесть к=1/R=1/2,64=0,38. Пол пусть будет на грунте и его поделим на зоны у нас их две и потери считаем для двух зон , тогда к1=1/2,15=0,47, к2=1/4,3=0,23. Окна пусть будут энергосберегающие Rо= 0,87 (м2°С/Вт), тогда к=1/0,87=1,14.
На картинке видно, что количество потерь тепла уже прорисовывается.
К сожалению, также вручную заполняются и дополнительные потери. Вводить их нужно в процентах, программа сама в формуле переведет их на коэффициент. И так, для нашего примера: Стены 3 значит к каждой стене +5% теплопотерь, местность не веретенная поэтому +5% к каждому окну и стене, Ориентация на Юг +5% для конструкций, на Север и Восток +10%. Дверей внешних нет поэтому 0, но если бы были то суммировались бы проценты только к той стене в которой есть дверь. Напоминаем, что к полу или перекрытию дополнительные потери тепла не относятся.
Как видно, потери помещения возросли. Если у вас заходит в помещение уже теплый воздух, этот шаг последний. Число записанное в столбце Q, и есть ваши искомые тепловые потери помещения. И эту процедуру нужно провести для всех остальных помещений.
В нашем же случае воздух не подогревается ,и чтобы рассчитать полные потери тепла, нужно в столбик Rввести площадь нашего помещения 18 м2, а в столбец S его высоту 3 м.
Эта программа значительно ускоряет и упрощает расчеты, даже невзирая на большое количество введенных вручную элементов. Она не раз помогала нам. Надеемся и вам она станет помощником!
Правильный расчет теплопотерь покажет, что вы профессионал своего дела. Ведь согласитесь, расчет потерь 100 Вт/м2 слегка преувеличен, а в некоторых случаях недостаточен. Поэтому потратьте на 15 минут больше времени и рассчитайте тепловые потери здания. Исходя из этого вы сможете не только спроектировать более чем комфортные условия пребывания людей, но и сэкономить заказчику немалые средства на эксплуатацию систем. А опыт показывает, что к таким проектировщикам обращаются чаще.
airducts.ru
Опубликовано 05 мая 2015Рубрика: Теплотехника | 29 комментариев
Несмотря на то, что теплопотери через пол большинства одноэтажных промышленных, административно-бытовых и жилых зданий редко превышают 15% от общих потерь тепла, а при увеличении этажности порой не достигают и 5%, важность правильного решения задачи...
...определения теплопотерь от воздуха первого этажа или подвала в грунт не теряет своей актуальности.
Особенно важно правильно рассчитать эти теплопотери для подвальных комнат (залов), где они могут составить все 100% для данного типа помещений!
В этой статье рассматриваются два варианта решения поставленной в заголовке задачи. Выводы — в конце статьи.
Считая потери тепла, всегда следует различать понятия «здание» и «помещение».
При выполнении расчета для всего здания преследуется цель — найти мощность источника и всей системы теплоснабжения.
При расчете тепловых потерь каждого отдельного помещения здания, решается задача определения мощности и количества тепловых приборов (батарей, конвекторов и т.д.), необходимых для установки в каждое конкретное помещение с целью поддержания заданной температуры внутреннего воздуха.
Воздух в здании нагревается за счет получения тепловой энергии от Солнца, внешних источников теплоснабжения через систему отопления и от разнообразных внутренних источников – от людей, животных, оргтехники, бытовой техники, ламп освещения, системы горячего водоснабжения.
Воздух внутри помещений остывает за счет потерь тепловой энергии через ограждающие конструкции строения, которые характеризуются термическими сопротивлениями, измеряемыми в м2·°С/Вт:
R=Σ(δi/λi)
δi – толщина слоя материала ограждающей конструкции в метрах;
λi – коэффициент теплопроводности материала в Вт/(м·°С).
Ограждают дом от внешней среды потолок (перекрытие) верхнего этажа, наружные стены, окна, двери, ворота и пол нижнего этажа (возможно – подвала).
Внешняя среда – это наружный воздух и грунт.
Расчет потерь тепла строением выполняют при расчетной температуре наружного воздуха для самой холодной пятидневки в году в местности, где построен (или будет построен) объект!
Но, разумеется, никто не запрещает вам сделать расчет и для любого другого времени года.
Температура грунта под зданием зависит в первую очередь от теплопроводности и теплоемкости самого грунта и от температуры окружающего воздуха в данной местности в течение года. Так как температура наружного воздуха существенно различается в разных климатических зонах, то и грунт имеет разную температуру в разные периоды года на разных глубинах в различных районах.
Для упрощения решения сложной задачи определения теплопотерь через пол и стены подвала в грунт вот уже более 80 лет успешно применяется методика разбиения площади ограждающих конструкций на 4 зоны.
Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°С/Вт:
R1=2,1 R2=4,3 R3=8,6 R4=14,2
Зона 1 представляет собой полосу на полу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра или (в случае наличия подпола или подвала) полосу той же шириной, отмеренную вниз по внутренним поверхностям наружных стен от кромки грунта.
Зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания.
Зона 4 занимает всю оставшуюся центральную площадь.
На рисунке, представленном чуть ниже зона 1 расположена полностью на стенах подвала, зона 2 – частично на стенах и частично на полу, зоны 3 и 4 полностью находятся на полу подвала.
Если здание узкое, то зон 4 и 3 (а иногда и 2) может просто не быть.
Площадь пола зоны 1 в углах учитывается при расчете дважды!
Если вся зона 1 располагается на вертикальных стенах, то площадь считается по факту без всяких добавок.
Если часть зоны 1 находится на стенах, а часть на полу, то только угловые части пола учитываются дважды.
Если вся зона 1 располагается на полу, то посчитанную площадь следует при расчете увеличить на 2×2х4=16 м2 (для дома прямоугольного в плане, т.е. с четырьмя углами).
Если заглубления строения в грунт нет, то это значит, что H=0.
Ниже представлен скриншот программы расчета в Excel теплопотерь через пол и заглубленные стены для прямоугольных в плане зданий.
Площади зон F1, F2, F3, F4 вычисляются по правилам обычной геометрии. Задача громоздкая, требует часто рисования эскиза. Программа существенно облегчает решение этой задачи.
Общие потери тепла в окружающий грунт определяются по формуле в КВт:
QΣ=((F1+F1у)/R1+F2/R2+F3/R3+F4/R4)*(tвр-tнр)/1000
Пользователю необходимо лишь заполнить в таблице Excel значениями первые 5 строчек и считать внизу результат.
Для определения тепловых потерь в грунт помещений площади зон придется считать вручную и затем подставлять в вышеприведенную формулу.
На следующем скриншоте показан в качестве примера расчет в Excel теплопотерь через пол и заглубленные стены для правого нижнего (по рисунку) помещения подвала.
Сумма потерь тепла в грунт каждым помещением равна общим тепловым потерям в грунт всего здания!
На рисунке ниже показаны упрощенные схемы типовых конструкций полов и стен.
Пол и стены считаются неутепленными, если коэффициенты теплопроводности материалов (λi), из которых они состоят, больше 1,2 Вт/(м·°С).
Если пол и/или стены утеплены, то есть содержат в составе слои с λ<1,2 Вт/(м·°С), то сопротивление рассчитывают для каждой зоны отдельно по формуле:
Rутепл i=Rнеутепл i+Σ(δj/λj)
Здесь δj – толщина слоя утеплителя в метрах.
Для полов на лагах сопротивление теплопередаче вычисляют также для каждой зоны, но по другой формуле:
Rна лагах i=1,18*(Rнеутепл i+Σ(δj/λj))
Очень интересная методика для заглубленных в грунт зданий изложена в статье «Теплофизический расчет теплопотерь подземной части зданий». Статья вышла в свет в 2010 году в №8 журнала «АВОК» в рубрике «Дискуссионный клуб».
Тем, кто хочет понять смысл написанного далее, следует прежде обязательно изучить вышеназванную статью.
А.Г. Сотников, опираясь в основном на выводы и опыт других ученых-предшественников, является одним из немногих, кто почти за 100 лет попытался сдвинуть с мертвой точки тему, волнующую многих теплотехников. Очень импонирует его подход с точки зрения фундаментальной теплотехники. Но сложность правильной оценки температуры грунта и его коэффициента теплопроводности при отсутствии соответствующих изыскательских работ несколько сдвигает методику А.Г. Сотникова в теоретическую плоскость, отдаляя от практических расчетов. Хотя при этом, продолжая опираться на зональный метод В.Д. Мачинского, все просто слепо верят результатам и, понимая общий физический смысл их возникновения, не могут определенно быть уверенными в полученных числовых значениях.
В чем смысл методики профессора А.Г. Сотникова? Он предлагает считать, что все теплопотери через пол заглубленного здания «уходят» в глубь планеты, а все потери тепла через стены, контактирующие с грунтом, передаются в итоге на поверхность и «растворяются» в воздухе окружающей среды.
Это похоже отчасти на правду (без математических обоснований) при наличии достаточного заглубления пола нижнего этажа, но при заглублении менее 1,5…2,0 метров возникают сомнения в правильности постулатов…
Несмотря на все критические замечания, сделанные в предыдущих абзацах, именно развитие алгоритма профессора А.Г. Сотникова видится весьма перспективным.
Выполним расчет в Excel теплопотерь через пол и стены в грунт для того же здания, что и в предыдущем примере.
Записываем в блок исходных данных размеры подвальной части здания и расчетные температуры воздуха.
Далее необходимо заполнить характеристики грунта. В качестве примера возьмем песчаный грунт и впишем в исходные данные его коэффициент теплопроводности и температуру на глубине 2,5 метров в январе. Температуру и коэффициент теплопроводности грунта для вашей местности можно найти в Интернете.
Стены и пол выполним из железобетона (λ=1,7 Вт/(м·°С)) толщиной 300мм (δ=0,3 м) с термическим сопротивлением R=δ/λ=0,176 м2·°С/Вт.
И, наконец, дописываем в исходные данные значения коэффициентов теплоотдачи на внутренних поверхностях пола и стен и на наружной поверхности грунта, соприкасающегося с наружным воздухом.
Программа выполняет расчет в Excel по нижеприведенным формулам.
Площадь пола:
Fпл=B*A
Площадь стен:
Fст=2*h*(B+A)
Условная толщина слоя грунта за стенами:
δусл=f(h/H)
Термосопротивление грунта под полом:
R17=(1/(4*λгр)*(π/Fпл)0,5
Теплопотери через пол:
Qпл=Fпл*(tв— tгр)/(R17+Rпл+1/αв)
Термосопротивление грунта за стенами:
R27=δусл/λгр
Теплопотери через стены:
Qст=Fст*(tв— tн)/(1/αн+R27+Rст+1/αв)
Общие теплопотери в грунт:
QΣ=Qпл+Qст
Теплопотери здания через пол и стены в грунт, полученные по двум различным методикам существенно разнятся. По алгоритму А.Г. Сотникова значение QΣ=16,146 КВт, что почти в 5 раз больше, чем значение по общепринятому «зональному» алгоритму — QΣ=3,353 КВт!
Дело в том, что приведенное термическое сопротивление грунта между заглубленными стенами и наружным воздухом R27=0,122 м2·°С/Вт явно мало и навряд ли соответствует действительности. А это значит, что условная толщина грунта δусл определяется не совсем корректно!
К тому же «голый» железобетон стен, выбранный мной в примере — это тоже совсем нереальный для нашего времени вариант.
Внимательный читатель статьи А.Г. Сотникова найдет целый ряд ошибок, скорее не авторских, а возникших при наборе текста. То в формуле (3) появляется множитель 2 у λ, то в дальнейшем исчезает. В примере при расчете R17 нет после единицы знака деления. В том же примере при расчете потерь тепла через стены подземной части здания площадь зачем-то делится на 2 в формуле, но потом не делится при записи значений… Что это за неутепленные стены и пол в примере с Rст=Rпл=2 м2·°С/Вт? Их толщина должна быть в таком случае минимум 2,4 м! А если стены и пол утепленные, то, вроде, некорректно сравнивать эти теплопотери с вариантом расчета по зонам для неутепленного пола.
Но самый главный вопрос автору (или редакции журнала) касается формулы (3) и графика:
R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Насчет вопроса, относительно присутствия множителя 2 у λгр было уже сказано выше.
Я поделил полные эллиптические интегралы друг на друга. В итоге получилось, что на графике в статье показана функция при λгр=1:
δусл= (½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Но математически правильно должно быть:
δусл= 2*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
или, если множитель 2 у λгр не нужен:
δусл= 1*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Это означает, что график для определения δусл выдает ошибочные заниженные в 2 или в 4 раза значения…
Выходит пока всем ничего другого не остается, как продолжать не то «считать», не то «определять» теплопотери через пол и стены в грунт по зонам? Другого достойного метода за 80 лет не придумали. Или придумали, но не доработали?!
Предлагаю читателям блога протестировать оба варианта расчетов в реальных проектах и результаты представить в комментариях для сравнения и анализа.
Все, что сказано в последней части этой статьи, является исключительно мнением автора и не претендует на истину в последней инстанции. Буду рад выслушать в комментариях мнение специалистов по этой теме. Хотелось бы разобраться до конца с алгоритмом А.Г. Сотникова, ведь он реально имеет более строгое теплофизическое обоснование, чем общепринятая методика.
Прошу уважающих труд автора скачивать файл с программами расчетов после подписки на анонсы статей!
Ссылка на скачивание файла:
teplopoteri-cherez-pol-i-steny-v-grunt (xls 80,5KB)
Почти через год после написания статьи удалось разобраться с вопросами, озвученными чуть выше.
Во-первых, программа расчета теплопотерь в Excel по методике А.Г. Сотникова считает все правильно — точно по формулам А.И. Пеховича!
Во-вторых, внесшая сумятицу в мои рассуждения формула (3) из статьи А.Г. Сотникова не должна выглядеть так:
R27=δусл/(2*λгр)=К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
В статье А.Г. Сотникова — не верная запись! Но далее график построен, и пример рассчитан по правильным формулам!!!
Так должно быть согласно А.И. Пеховичу (стр 110, дополнительная задача к п.27):
R27=δусл/λгр=1/(2*λгр)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Отсюда:
δусл=R27*λгр=(½)*К(cos((h/H)*(π/2)))/К(sin((h/H)*(π/2)))
Другие статьи автора блога
На главную
al-vo.ru
Содержание статьи
Комфорт – штука капризная. Приходят минусовые температуры, сразу становится зябко, и безудержно тянет к домашнему обустройству. Начинается «глобальное утепление». И здесь есть одно «но» – даже просчитав теплопотери дома и смонтировав обогрев «согласно плану», можно остаться лицом к лицу с быстро уходящим теплом. Процессом визуально не заметным, зато отлично чувствующимся через шерстяные носки и большие счета за отопление. Остается вопрос – куда «драгоценное» тепло ушло?
Естественные теплопотери хорошо прячутся за несущие конструкции или «добротно» сделанное утепление, где прорех по умолчанию не должно быть. Но так ли это? Давайте рассмотрим вопрос тепловых утечек для разных элементов конструкции.
До 30% от всех теплопотерь дома приходится на стены. В современном строительстве они представляют собой многослойные конструкции из разных по теплопроводности материалов. Расчеты для каждой стены можно проводить индивидуально, но есть общие для всех погрешности, через которые из помещения уходит тепло, а снаружи в дом поступает холод.
Место, где изоляционные свойства ослаблены, называется – «мостик холода». Для стен это:
Оптимальный шов кладки – 3мм. Достигается он чаще клеевыми составами мелкой текстуры. Когда объем раствора между блоками увеличивается – растет теплопроводность всей стены. Причем температура шва кладки может быть на 2-4 градуса холоднее основного материала (кирпича, блока и т.п.).
Кладочные швы как “термомост”Один из высоких коэффициентов теплопроводности среди строительных материалов (1,28 – 1,61 Вт/ (м*К)) у железобетона. Это делает его источником теплопотерь. Вопрос полностью не решают и ячеистые или пенобетонные перемычки. Разница температур железобетонной балки и основной стены часто близится к 10 градусам.
Изолировать перемычку от холода можно сплошным наружным утеплением. А внутри дома – собрав короб из ГК под карниз. Так создается дополнительная воздушная прослойка для тепла.
Подключение кондиционера, ТВ-антенны оставляет прорехи в общем утеплении. Сквозной металлический крепеж и проходное отверстие необходимо плотно заделать утеплителем.
А по возможности, не выводить металлические крепления наружу, зафиксировав их внутри стены.
Монтаж поврежденного материала (со сколами, сдавливанием и т.п.) оставляет уязвимые области для утечек тепла. Это хорошо видно при обследовании дома тепловизором. Яркие пятна показывают бреши в наружном утеплении.
Поврежденный утеплитель на тепловизореПри эксплуатации важно следить за общим состоянием утепления. Ошибка в выборе клея (не специального для теплоизоляции, а плиточного) может выдать трещины в конструкции уже через 2 года. Да и основные утеплительные материалы так же имеют свои минусы. Например:
В работе с обоими материалами важно соблюсти четкую подгонку замков утеплительных плит и перекрестное расположение листов.
Опыт! Потери тепла могут нарастать во время эксплуатации, ведь у всех материалов есть свои нюансы. Лучше периодически оценивать состояние утепления и повреждения устранять сразу. Трещина на поверхности – это «скоростная» дорога к разрушениям утеплителя внутри.
Бетон – преобладающий материал в строительстве фундаментов. Его высокая теплопроводность и прямой контакт с грунтом дают до 20% теплопотерь по всему периметру здания. Фундамент особенно сильно проводит тепло из подвального помещения и неправильно смонтированного теплого пола на первом этаже.
Теплопотери через фундаментПотери тепла увеличивает и лишняя влага, не отведенная от дома. Она разрушает фундамент, создавая лазейки для холода. К влажности чувствительны и многие теплоизоляционные материалы. Например, минвата, которая часто переходит на фундамент с общего утепления. Она легко повреждается влагой, и поэтому требует плотного защитного каркаса. Керамзит так же теряет свои теплоизоляционные свойства на постоянно влажном грунте. Его структура создает воздушную подушку и хорошо компенсирует давление грунтов при замерзании, но постоянное присутствие влаги сводит к минимуму полезные свойства керамзита в утеплении. Именно поэтому создание рабочего дренажа – обязательное условие долгой жизни фундамента и сохранения тепла.
Сюда же по важности можно отнести и гидроизоляционную защиту основания, а так же многослойную отмостку, шириной не меньше метра. При столбчатом фундаменте или пучинистом грунте отмостка по периметру утепляется, что бы защитить от промерзания грунт у основания дома. Утепляется отмостка керамзитом, листами пенополистирола или пенопласта.
Листовые материалы для утепления фундамента лучше выбирать с пазовым соединением, и его обрабатывать специальным силиконовым составом. Герметичность замков перекрывает доступ холоду и гарантирует сплошную защиту фундамента. В этом вопросе бесшовное напыление пенополиуретана имеет бесспорное преимущество. Вдобавок, материал эластичный и не трещит при пучении грунта.
Для всех видов фундаментов можно использовать разработанные схемы утепления. Исключением может быть фундамент на сваях, за счет своей конструкции. Здесь при обработке ростверка важно учитывать пучинистость грунта и выбрать технологию, не разрушающую сваи. Это сложный расчет. Практика же показывает, что дом на сваях защищает от холода грамотно утепленный пол первого этажа.
Внимание! Если в доме есть подвал, и он часто затопляется, то с утеплением фундамента это необходимо учесть. Так как утеплитель/изолятор в данном случае будет закупоривать влагу в фундаменте, и его разрушать. Соответственно – тепло будет теряться еще больше. Первым необходимо решить вопрос с затоплением.
Неизолированное перекрытие отдает весомую часть тепла фундаменту и стенам. Это особенно заметно при неправильном монтаже теплого пола – нагревательный элемент быстрее остывает, увеличивая затраты на обогрев помещения.
Пол на тепловизореЧтобы тепло от пола уходило в комнату, а не на улицу, нужно проследить, что бы монтаж шел по всем правилам. Основные из которых:
Серьезное утепление актуально для любого пола, и не обязательно с подогревом. Плохая теплоизоляция превращает пол в большой «радиатор» для грунта. Стоит ли его отапливать зимой?!
Важно! Холодные полы и сырость появляются в доме при не рабочей или не сделанной вентиляции подпольного пространства (не организованы продухи). Ни одна система отопления не компенсирует такой недочет.
Соединения нарушают целостные свойства материалов. Поэтому углы, стыки и примыкания настолько уязвимы для холода и влаги. Места соединения бетонных панелей отсыревают первыми, там же проявляются грибок и плесень. Разница температур угла комнаты (место стыковки конструкций) и основной стены может колебаться от 5-6 градусов, до минусовых температур и конденсата внутри угла.
Угол комнаты окна на тепловизореПодсказка! На местах таких соединений мастера рекомендуют делать снаружи увеличенный слой изоляции.
Тепло часто уходит через межэтажное перекрытие, когда плита укладывается на всю толщину стены и ее края выходят на улицу. Здесь увеличиваются теплопотери как первого, так и второго этажа. Формируются сквозняки. Опять же, если на втором этаже есть теплый пол – наружное утепление должно быть на это рассчитано.
Тепло из помещения выводится по обустроенным вентиляционным каналам, обеспечивающим здоровый воздухообмен. Вентиляция, работающая «наоборот», затягивает холод с улицы. Происходит это, когда в помещении создается дефицит воздуха. Например, когда включенный вентилятор в вытяжке забирает слишком много воздуха из помещения, за счет чего он начинает затягиваться с улицы через другие вытяжные каналы (без фильтров и обогрева).
Вопросы, как не выводить большое количество тепла наружу, и как не впускать холодный воздух в дом, давно имеют свои профессиональные решения:
Комфорт стоит хорошей вентиляции. При нормальном воздухообмене не образуется плесень, и создается здоровый микроклимат для обитания. Именно поэтому хорошо утепленный дом с комбинацией изолирующих материалов обязательно должен иметь рабочую вентиляцию.
Итог! Для уменьшения теплопотерь через вентиляционные каналы необходимо устранить ошибки перераспределения воздуха в помещении. В добротно работающей вентиляции только теплый воздух покидает дом, часть тепла из которого можно вернуть обратно.
Через дверные и оконные проемы дом теряет до 25% тепла. Слабые места для дверей это – прохудившийся уплотнитель, который можно легко переклеить на новый и сбившаяся внутри теплоизоляция. Заменить ее можно, сняв кожух.
Уязвимые места для деревянных и пластиковых дверей похожи на «мостики холода» в аналогичных конструкциях окон. Поэтому общий процесс на их примере и рассмотрим.
Что выдает «оконную» потерю тепла:
Створки могут неплотно прилегать, когда окно не отрегулировано, и резинки по периметру износились. Положение створок можно настроить самостоятельно, равно, как и поменять уплотнитель. Полную его замену лучше проводить раз в 2-3 года, и желательно на уплотнитель «родного» производства. Посезонная чистка и смазка резинок сохраняет их эластичность при перепадах температур. Тогда уплотнитель долго не пропускает холод.
Щели в самой раме (актуально для деревянных окон) заполняются силиконовым герметиком, лучше прозрачным. Когда он попадает на стекло – не так заметно.
Стыки откосов и профиля окна так же заделываются герметиком или жидким пластиком. В сложной ситуации, можно использовать самоклеящийся пенополиэтилен – «утепляющий» скотч для окон.
Важно! Стоит проследить, что бы в отделке наружных откосов утеплитель (пенопласт и т.п.) полностью закрывал шов монтажной пены и расстояние до середины рамы окна.
Современные способы уменьшить теплопотери через стекло:
Полезно! Уменьшают теплопотери через стекло – организованные воздушные завесы над окнами (можно в виде теплых плинтусов) или защитные роллеты на ночь. Особенно актуально при панорамном остеклении и сильных минусовых температурах.
Теплопотери касаются и отопления, где утечки тепла чаще происходят по двум причинам.
Соблюдение нехитрых правил уменьшает теплопотери и не дает системе отопления работать «в холостую»:
Заметка! При новом заполнении в воду лучше добавить антикоррозийные ингибиторы. Это поддержит металлические элементы системы.
Тепло изначально стремится к верхней части дома, что делает крышу одним из самых уязвимых элементов. На нее приходится до 25% всех теплопотерь.
Холодное чердачное помещение или жилая мансарда утепляются одинаково плотно. Основные теплопотери идут на стыках материалов, не важно, утепление это или элементы конструкции. Так, часто упускаемым мостиком холода является граница стен с переходом в крышу. Этот участок желательно обрабатывать вместе с мауэрлатом.
Граница стен с переходом в крышуОсновное утепление тоже имеет свои нюансы, связанные больше с использованными материалами. Например:
Практика! В верхних конструкциях любая брешь может отводить много дорогого тепла. Здесь важно поставить акцент на плотном и непрерывном утеплении.
Места теплопотерь полезно знать не только для того, что бы обустроить дом и жить в комфортных условиях, но и что бы не переплачивать за отопление. Грамотное утепление на практике окупается за 5 лет. Срок долгий. Но ведь и дом мы не на два года строим.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Понравилась статья?
Поделиться с друзьями:
Подпишитесь на новые
volgaproekt.ru
Всем известно выражение: тепло не там, где хорошо топят, а там, где его берегут. Отсюда можно сделать вывод что вопрос о том, как сохранить тепло в доме отнюдь не праздный, а требует серьезного подхода. Анализ потерь тепла в доме показал следующие результаты:
К проблемам потери тепла в доме нужно отнестись серьезно еще и потому, что затраты на сохранение тепловой энергии зимой окупятся летом при уменьшении затрат на кондиционирование.
Схема утепления фасадных стен
Если обогрев в помещении работает на максимально допустимых пределах, а температура едва превышает +18 ºС, то уже дает повод задуматься над этим и выявить причину, которая может быть в старом котле, неплотных окнах, дверях, однако, начинать нужно с проверки утепления фасада. При нагревании воздуха в помещении до температуры от + 18 ºС до+ 22 ºС стены должны прогреваться до + 16 - 20 ºС. Если температура ниже допустимой – это указывает на проблемное место, которое требует дополнительного утепления. Еще один признак, указывающий на проблему – повышение влажности, образование конденсата на охлажденном участке.
Способов повышения энергосбережения холодных участков стен много. Можно, например, выполнить утепление фасадов, учитывая при этом различные характеристики теплоизоляционного материала и выбрать тот, который вам подходит. При этом нужно учесть, что утеплитель из минеральной ваты эффективен только в сухом состоянии, поэтому такой утеплитель должен находится между гидро - и пароизоляционными пленками. Особенно, это касается каркасных домов. Стоить заметить, что утепляя стены минеральной ватой с внутренней стороны стен, допускается ошибка, так как в этом случае возможно выпадание конденсата на стенах в результате разности температур воздуха в помещении и температуры стены.
Из всех строительных материалов утеплению не подлежат стены из керамоблоков толщиной от 440 мм и пеноблоков – толщиной от 350 мм. Если вы проектируете строить новый дом, то нужно стены делать из материалов с повышенным сопротивлением теплоотдачи. Этим вы в будущем сэкономите деньги, так как цены на тепло, к сожалению, постоянно растут. В некоторых случаях рациональней построить тонкие стены с последующим их утеплением.
Утепление фасадных стен
Для утепления стен с наружной стороны используют базальтовую или стекловолоконную минеральную вату, а также пенополистирол, толщину которого определяет специалист. При этом учитывается характеристика материала из которого выложены стены, ветровые нагрузки, расположение дома, предназначение внутренних помещений.
Утепление наружных стен может происходить разными методами. Но чаще всего используется так называемая мокрая технология, при которой, на укрепленный на стене утеплитель, монтируется армирующий слой, с нанесенной затем на него штукатурку. Применяется также и способ «сухой» технологии – когда на стене делается каркас, к которому затем крепится облицовочный материал ( сайдинг, вагонка, пластиковые панели и т. д.). Оставшийся зазор между стеной и облицовкой обеспечивает циркуляцию воздушного потока, аккумулирующего теплый воздух в зазоре.
Бывают ситуации когда дом, уже утепленный ранее, требуют локального ремонта стен в местах, где наблюдается выпадение конденсата. В этом случае удаляются все слои теплоизоляции, проверяют качество укладки стен и производят повторное утепление проблемного места. При обследовании стен особое внимание уделяют углам стыковки наружных стен, потому что эти места подвергаются воздействию холодного воздуха с двух сторон. Предотвратить эту неприятность можно, установив в угол стояк отопления либо закруглить углы.
Утепление кровли
Конечно, через конструкцию крыши уходит меньше тепла чем через стены, но все же они также значительны. Очень важным моментом в этой ситуации является профилактический осмотр всей кровли как снаружи, так и внутри на чердаке. С наружной стороны проверяют целостность покрытия, его прилегания к коньку. Внутри тщательно обследуют поверхность на наличие плесени и грибков. Недостатки также могут обнаруживаться появлением на потолке и стенах последнего этажа здания мокрых пятен.
Работы по устранению недостатков сначала ведутся изнутри: удаляют обшивку, теплоизоляционный слой, проверяют сам утеплитель. При обнаружении мокрых и деформированных плит производят их замену и защищают новой гидроизоляционной пленкой. Бывает что никаких дефектов не было обнаружено, а потолок мокреет и через крышу уходит много тепла. В таком случае теплоизоляция является недостаточной и подлежит практической замене вся, конечно, кроме финишного покрытия в виде металлочерепицы, битумной черепицы и т. д. А бывают случаи, особенно, в старых постройках, что утеплитель и вовсе отсутствует, тогда нужно его будет обустраивать с «нуля».
Теплопотери через крышу тесно связано с аналогичными неприятностями, касающихся стен, поэтому прежде, чем заняться стенами, убедитесь что у вас нет проблем с крышей.
Утепление окон
Если крыша и стены находятся в состоянии покоя, то этого не скажешь о дверях и окнах, которые постоянно открываются и закрываются, вследствие чего происходит попадание холодного воздуха в помещение. Для выяснения проблем нужно внимательно обследовать участки стен возле дверей и окон на наличии мокрых пятен, а также убедиться в отсутствии щелей.
В обнаруженные щели нужно задуть монтажную пену и замазать эти места штукатуркой. Если пену не защитить штукатуркой или хотя бы шпатлевкой, то в результате атмосферных воздействий она потеряет свои теплоизоляционные свойства. Однако, более правильный путь – это уплотнить проемы окон и дверей гидроизоляционной лентой, на которую с помощью клея крепится пенопласт или пенополистирол, который в свою очередь покрывается штукатурной сеткой и штукатурится.
Особое вниманию нужно уделить правильности монтажа и отделки откосов, потому что если они выполнены плохо, то даже самые лучшие стеклопакеты не помогут. Откосы отделываются пластиком, влагостойким гипсокартоном или просто штукатурятся. Однако, во всех случаях нужно правильно выполнить все условия наружной гидроизоляции. Для более плотного примыкания откосов к окну используют специальные профили.
После решения вопросов с откосами переходят к проверке состояния самих окон и дверей, где особое внимание уделяют качеству резиновых уплотнителей, провисанию створок окон и дверных полотен. При необходимости подтягивают петли, ручки и другие крепежные детали.
Часто причина образование конденсата вокруг откосов окон и дверей заключается в неправильной установке подоконника, который закрывает значительную часть обогревательного элемента, если не весь. Такая установка подоконника препятствует циркуляции теплого воздуха в помещении и, как правило, вокруг откосов образовываются мокрые пятна, а со временем и плесень.
Схема работы рекуператора
Создание благоприятного климата в помещении является залогом здоровья не только его обитателей, но и сохранения целостности строительных конструкций. Современные стеклопакеты и оконные блоки в закрытом положении совершенно герметичны, поэтому если в помещении есть только вытяжные каналы, а приточной вентиляции нет, то нужно обязательно восполнить этот недостаток открыванием и закрыванием окон по несколько раз на день.
Однако, здесь палка о двух концах, потому что с приходом свежего воздуха одновременно из жилья уходит теплый воздух. Если перед вами стоит задача эффективно проветрить помещение, то достигается это путем коротко срочных и частых манипуляций с открыванием окон. Длительное же проветривание приведет к существенному снижению температуры в помещении и к увеличению энергозатрат.
Выходом для эффективной оптимизации проветривания помещения является применение автоматизированной приточно-вытяжной вентиляции. Конструктивно она состоит из приточной установки, вентилятора, вентиляционных каналов и рекуператора, в котором происходит перемешивание свежего и отработанного воздуха. Применение этой системы позволяет зимой сохранить тепло, а летом прохладу. Установка автоматизированной приточно-вытяжной вентиляции требует ощутимых финансовых затрат, однако, они стоят этого, так как установка рекуператора позволяет экономить тепло в жилище на 50-60 %.
Более эффективно выявить места, требующие исправления, можно при помощи тепловизионного обследования, которое могут выполнить только специалисты. Имея на руках прибор, который называется «тепловизор», они без проблем по картинке на мониторе прибора могут определить в каких местах уходит тепло. Высокая скорость проведения работ, точность результатов – все это говорит в пользу прибора.
remontzhilya.ru
Условно теплопотери частного дома можно разделить на две группы:
Далее предлагаем вашему вниманию 15 примеров таких «утечек». Это реальные проблемы, которые чаще всего встречаются в частных домах. Вы увидите какие проблемы могут присутствовать в вашем доме и на что следует обратить внимание.
Изоляция работает не так эффективно, как могла бы. На термограмме видно, что температура на поверхности стены распределена неравномерно. То есть, одни участки стены нагреваются сильнее других (чем ярче цвет, тем выше температура). А это значит что и потери тепла в ни сильнее, что неправильно для утепленной стены.
В данном случае яркие области это пример неэффективной работы изоляции. Вероятно что пенопласт в этих места поврежден, некачественно смонтирован или отсутствует вовсе. Поэтому после утепления здания важно убедиться, что работы выполнены качественно и изоляция работает эффективно.
Стык между деревянной балкой и минеральной ватой недостаточно уплотнен. Из-за этого изоляция работает недостаточно эффективно и обеспечивает дополнительные потери тепла через крышу, которых можно было бы избежать.
Одна из причин почему в доме холодно — некоторые секции радиатора не нагреваются. Это может быть вызвано несколькими причинами: строительный мусор, скопление воздуха или заводской брак. Но результат один — радиатор работает в половину своей отопительной мощности и недостаточно греет помещение.
Еще один пример неэффективной работы радиатора.
Внутри помещения установлен радиатор, который очень сильно нагревает стену. В результате часть выделяемого им тепла уходит на улицу. Фактически тепло используется для обогрева улицы.
Труба теплого пола уложена близко к наружной стене. Теплоноситель в системе охлаждается более интенсивно и его приходится подогревать чаще. Результат - увеличение затрат на отопление.
Часто в окнах присутствуют щели, которые появляются из-за:
Через щели в помещение постоянно попадает холодный воздух, из-за которого образуются вредные для здоровья сквозняки и увеличиваются теплопотери здания.
См. подробнее: 7 скрытых ошибок монтажа в окнах, которые делают ваш дом холоднее
Также щели возникают в балконных и входных дверях.
«Мостики холода» — это участки здания с более низким термическим сопротивлением по отношению к другим участкам. То есть они пропускают больше тепла. Например это углы, бетонные перемычки над окнами, места сопряжения строительных конструкций и так далее.
Чем вредны мостики холода:
Вентиляция работает «наоборот». Вместо удаления воздуха из помещения наружу, с улицы в помещение затягивается холодный уличный воздух. Это также, как и в примере с окнами обеспечивает сквозняки и охлаждает помещение. На приведенном примере температура воздуха, который попадает в помещение -2,5 градуса, при температуре помещения ~20-22 градуса.
См. подробнее: вентиляция, как скрытый источник холода в доме
А в данном случае холод попадает в помещение через люк на чердак.
Приток холода в помещение через монтажное отверстие кондиционера.
На термограмме видны «мостики тепла», связанные с использованием при строительстве стены материалов с более слабым сопротивлением теплопередаче.
Часто утепляя стену здания забывают о еще важном участке — фундаменте. Через фундамент здания также осуществляются потери тепла, особенно если в здании есть подвальное помещение или внутри уложен теплый пол.
Кладочные швы между кирпичами являются многочисленными мостиками холода и увеличивают теплопотери через стены. На приведенном примере видно, что разница между минимальной температурой (кладочный шов) и максимальной (кирпич) составляет почти 2 градуса. Термическое сопротивление стены снижено.
Мостик холода и воздушная течь под потолком. Возникает из-за недостаточной герметизации и утепления стыков между кровлей, стеной и плитой перекрытия. В результате помещение дополнительно охлаждается и появляются сквозняки.
Все это типичные ошибки, которые встречаются в большинстве частных домов. Многие из них легко устраняются и позволяют заметно улучшить энергетическое состояние здания.
Перечислим их еще раз:
Рекомендуем к прочтению
Если не газом? Альтернативные способы отопления частного дома
Как зарабатывать на продаже электроэнергии государству? Все о зеленом тарифе в Украине.
Солнечные коллекторы для отопления дома. Виды, преимущества и недостатки.
Тепловые насосы для отопления дома. Какие бывают, чем отличаются и когда их лучше использовать?
term.od.ua