Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Грунтовый теплообменник для системы вентиляции с рекуперацией. Грунтовый теплообменник


Как самостоятельно построить грунтовой теплообменник

Использование грунтового теплообменника все чаще встречается в частных домах в качестве принудительной вентиляции. Это выгодная альтернатива, которую можно сделать своими руками. Виды грунтовых теплообменников, их принцип работы, а также инструкция по изготовлению – все это изложено в статье.

Принцип работы

Давно известно, что почти на всей территории стран СНГ, температура в грунте на глубине 2 метров остается неизменной, а именно – около 10°C. Меняется она в зависимости от региона, но колебания обычно не превышают + — 2°C. Установка воздушных теплообменников подразумевает получение этой бесплатной энергии. За счет неизменной температуры конструкция прогревает помещения в холодное время года, а в жаркое – остужает. Грунтовая приточно-вытяжная вентиляция обеспечивает циркуляцию воздуха в помещении, также позволяет сохранить часть тепла, поступающего от обогревающего элемента. Обычно грунтовой теплообменникустанавливается вместе с рекуператором.

Рекуператор – это теплообменная система вентиляции. В ней холодный внешний воздух нагревается счет вытяжного теплого. В конструкции присутствует нагревающее устройство, вентиляторы, фильтры и трубопровод.

Эта схема позволяет получить уже подогретый свежий воздух из грунта, как результат – рекуператор затрачивает меньше энергии. Воздушная грунтовая система позволяет не только сохранить электроэнергию, но и сохранить конструкцию в рекуператоре в рабочем состоянии. В трубопроводе не будет замерзания конденсата, так как воздух подается всегда одной температуры. Подобная проблема обычно случается при использовании только рекуператора, когда в него идет морозный воздух.

Климат стран СНГ позволяет обеспечить теплообмен, величина охлаждения или подогрева в котором может колебаться от 5 до 20°C. Эффективность зависит от разницы между температурой грунта и внешним воздухом, чем она больше – тем сильнее теплообмен. Поэтому грунтовая система эффективна летом и зимой. В жару охлаждение осуществляется с 30°C до 20°C. В морозы подогрев происходит от -20°C до 0°C.

Весной и осенью температура воздуха в помещении чаще всего совпадает с температурой почвы. Поэтому теплообменник почти не влияет на микроклимат в доме. Но иногда грунтовая система может не только бездействовать, но и работать в отрицательном значении. К примеру, воздух в комнате имеет температуру около 12°C, а теплообменник охлаждает его до 8°C. В общем, использовать в межсезонье энергию грунта нет смысла. Изготавливая грунтовой теплообменник своими руками, нужно продумать способ отключения системы, чтобы свежий воздух шел с улицы, минуя теплообменник.

к содержанию ↑

Виды грунтовых теплообменников

Сегодня известно два вида:

  • Бесканальный. Используется подземный слой, через который проходит воздух для теплообмена.

  • Трубный (канальный). Здесь теплообмен происходит при помощи набора труб (канала), закопанных под землей.

Независимо от типа, основной подводящий канал монтируется к трубам вентиляционной системы. Свежий воздух к ней подается чаще всего через отверстие в стене. Важным моментом будет установка механизма, с помощью которого можно будет переключаться между двумя положениями: первое – в систему поступает свежий воздух с улицы, второе – работает грунтовая система. Простыми словами – нужно сделать грунтовой теплообменник своими руками с закрывающимися отверстиями для подачи воздуха из грунта и с улицы.

к содержанию ↑

Изготовление трубного теплообменника

фото - грунтовой трубный теплообменник

грунтовой трубный теплообменник

Теплообмен воздуха в этой системе более эффективный, но требует затраты средств и времени. Для изготовления грунтового теплообменника, необходимо уложить в траншею трубопровод. Обычно общая длина труб составляет от 15 до 50 метров, в зависимости от возможности и площади. В конструкции могут быть повороты труб, так как они почти не влияют на движения воздуха в системе. Укладывая трубопровод, нужно понимать, что чем он длиннее, тем эффективней будет происходить обмен тепла. Но при повышении длины будет вырастать аэродинамическое сопротивление.

Для эффективного охлаждения (или нагрева), должна быть большая длина трубопровода в теплообменнике. Если территория участка позволяет, то можно уложить вокруг него одну трубу. Если же площадь ограничена, тогда выходом из положения будет параллельная укладка. Диаметр трубопровода должен быть в диапазоне от 200 до 250 миллиметров.

Полипропиленовые трубы будут отличным выбором для системы. Чтобы обеспечить лучшую теплопроводность, нужно использовать трубопровод с большой поверхностью и меньшей толщиной стенок. Как вариант – гофрированный материал. Тогда тепло не будет оставаться в грунтовой системе. Укладка в траншее требует уклон 2%, независимо от сторон. Уклон будет служить для стока конденсата, появляющегося при охлаждении внешнего воздуха в жаркую погоду.

Удаление конденсата происходит за счет отверстия, которое создается на нижней отметке трубы. Сток жидкости осуществляться через дренажный колодец, в канализацию или прямо в землю. Если на участке низкий уровень грунтовых вод, то необходимо изготовить песчаную подушку. Конец трубы, который будет стоять на участке, должен быть оборудован фильтром. Также конец нужно установить выше уровня снега, который обычно выпадает.

Если в регионе снег является редким гостем, то высота выступающей трубы не должна быть меньше 1.5 метра. Это делается для защиты от радона – радиоактивного почвенного газа, которого больше всего возле поверхности. На конец трубы устанавливается воздухозаборник. Он оснащается фильтром и крепкой металлической сеткой. В трубу не должны попадать осадки, листья, грызуны, птицы или насекомые. При наличии возможности, воздухозаборник нужно поставить как можно дальше от источников загрязнение или запахов, допустимый минимум – 10 метров.

к содержанию ↑

Изготовление бесканального теплообменника

схема - грунтовой бесканальный теплообменник

грунтовой бесканальный теплообменник

Бесканальный грунтовой теплообменник подразумевает изготовление котлована с длиной около 3-4 метров и глубиной на 80 сантиметром. Котлован наполняется слоем гравия, а сверху покрывается пенобетонным покрытием. Эта конструкция позволяет получить температуру внутри специального слоя, которая не будет отличаться от температуры в грунте на глубине 5 метров. После изготовления котлована, из него нужно вывести трубу для поступления свежего воздуха.

Изготавливается этот патрубок по такой же схеме, как и в трубном теплообменнике. Ещё одна труба должна идти от специальной слоя до вентиляционной системы помещений. По простой схеме воздух начинает циркулировать. Он не только увлажняется, но и очищается. Плюс конструкции – это повышенная фильтрация. Минус – более низкая эффективность, чем в трубной системе.

к содержанию ↑

Итог

Изготовить воздушный грунтовой теплообменник достаточно дешево. Больше всего его работа заметна в зимнее время, насыщенное морозами. С охлаждением система справляется менее эффективно. Кондиционер будет гораздо эффективнее, чем грунтовая система обмена. Но плюс теплообменной системы заключается в дешевизне её установки и дальнейшей эксплуатации. Расходоваться будет только электроэнергия на работу вентилятора.

Видео со строительством грунтового теплообменника под плитой:

karkasnik.su

Грунтовой теплообменник как элемент вентиляционной системы дома

Экология познания. Усадьба: Замечательным дополнением вентиляционной системы любого дома станет грунтовой теплообменник (ГТО) — труба, слой щебня или безмембранный обменник, где царит температура, присуща почве на глубине 1,5-1,8 м, то есть 4-8 ° С.

Замечательным дополнением вентиляционной системы любого дома станет грунтовой теплообменник (ГТО) — труба, слой щебня или безмембранный обменник, где царит температура, присуща почве на глубине 1,5-1,8 м, то есть 4-8 ° С.

Наружный воздух, поступающий в теплообменник, зимой нагревается, а  летом охлаждается. Так (по результатам измерения при сильных морозах), наружный воздух температурой -22 °С нагревалось в ГТО, и на входе в  вентиляционный канал в дом, достигало + 2 °С. Понятно, что такой температуры недостаточно для обогрева помещений, однако энергетический эффект вполне ощутимый (почти 20 °С — даром): это тепло защищает вентиляционную систему от замерзания.

Летом ГТО превращается в эффективную систему охлаждения дома, благодаря чему отпадает необходимость в дорогостоящих кондиционерах. Качественно выполненный ГТО охладит воздух с 32° С до 15 °С.

Принцип работы грунтового теплообменника

Ниже глубины промерзания почвы (примерно 1,5 м) практически всегда сохраняется постоянная температура — 4-8 °С. Собственно эта накопленная в почве энергия и идет на работу ГТО, где воздух контактирует (посредственно или непосредственно) с почвой. В зависимости от температуры наружного воздуха, поступающего в ГТО, его температура или повышается (зимой), или понижается (летом).

На рисунках 1-2 показана принципы функционирования ГТО в разное время года.

Лето: рекуператор всасывает через ГТО подготовленный наружный воздух, который уже охладился (до 16 °С) при прохождении через ГТО. Чтобы избежать вторичного нагревания воздуха, подаваемого в помещение, рекуператор необходимо оборудовать байпасом

Зима: рекуператор всасывает через ГТО подготовленный наружный воздух, который нагрелся (обычно до 0-4 °С). Байпас рекуператора должен быть закрытым, чтобы воздух после ГТО проходил  еще и через теплообменник рекуператора. Тут ГТО выпоняет функцию предыдущего подогревателя,бесплатно нагревая входящий воздух и защищая рекуператор от замерзания. Взаимодействие высококлассного рекуператора с ГТО обеспечит подачу свежего воздуха в помещения, температура которого будет приближенной к температуре в помещении.

В рекуператорах последнего поколения предусмотрена функция программирования предельных температур работы ГТО зимой и летом. Автоматическая дроссельная заслонка с серводвигателем регулирует движение свежего воздуха между стеновым устройством для забора воздуха и грунтовым (ГТО).

Сроки окупаемости ГТО

Обозначить срок окупаемости ГТО достаточно сложно. Конечно, есть программы для быстрого расчета энергосбережения, которое обеспечивает ГТО. Однако эти данные исчерпывающе проинформируют специалистов и энергетических аудиторов, но почти ничего не скажут обычному потребителю.

Расходы на вентиляционную систему с отбором тепла возвращаются в течение 1-7 лет, в зависимости от дома, типа систем вентиляции и обогрева и т.п. Для домов, в которых рекуперационная система спроектирована не вместе с традиционной гравитационной вентиляцией, а вместо нее, этот период будет коротким: только несколько месяцев (если от затрат на систему рекуператора отнимем средства, котрые не пришлось расходовать на дымоходы, разгерметизаторы окон, дымоходные насадки, вентиляторы для ванных комнат и т.п.).

Если система дополнительно оборудована ГТО, время окупаемости может продлиться до нескольких лет, но не стоит ли внести в графу расходов повышение качества комфорта — свежий воздух в помещениях, охлаждение дома летом вместо дорогой и энергоемкой климат-системы?! Только сравнив стоимость эксплуатации дома, оборудованного ГТО, и дома с системой климатизации, можно определить реальный срок возврата инвестиций.

И самое важное: кондиционер не в состоянии обеспечить эффективный воздухообмен  в помещении; большинство кондиционеров «молотят» внутренний воздух, только охлаждая его, а внешний свежий воздух сюда не поступает. Это означает, что большинство кондиционеров не устранит из помещения аллергены, двовуокись углерода или химикаты, выделяемых например, красками и лаками. Система рекуператора — ГТО не только охлаждает, но и поставляет в помещение свежий воздух, устраняет из ванной комнаты и туалета использованный. Подобный эффект даст и кондиционер в доме, оборудованный рекуператором, эффективнее охлаждая воздух, чем сам ГТО, однако будет потреблять огромные объемы энергии.

Финансовые расчеты (без учета фактора комфорта) свидетельствуют, что затраты на ГТО возвращаются в течение 6-10 лет, иногда и дольше. Если же задуматься над комфортностью проживания, нашим здоровьем и «длиною» счетов, которые придется оплачивать за работу энергоемких кондиционеров, то ГТО может оказаться инвестицией с очень коротким временем окупаемости – практически 1-4 года.

Типы грунтовых теплообменников

Трубный ГТО

Самый простой в исполнении ГТО — это просто полимерная труба длиной 40-60 м, проложенная под землей, которая заканчивается воздухозаборником с защитной сеткой от насекомых и грызунов, часто и фильтром. Для односемейных домов чаще всего применяют трубу диаметром 200 мм (для площади 150-170 м2) или 250 мм (для площади 170-250 м2). Для домов большей площади диаметр ГТО следует точно вычислить в зависимости от потребностей воздухообмена в доме. Трубы меньшего диаметра непригодны для выполнения ГТО. Если диаметр трубы будет чуть больше диаметра монтажного штуцера рекуператора, то подача воздуха грунтовым теплообменником замедлится; как следствие, несколько увеличиться его производительность — воздух будет лучше нагреваться зимой, а охлаждаться  летом. Если диаметр трубы будет слишком большим, эффективность  обменника снизится, поскольку ограничится контакт потока воздуха со стенками трубопровода.

Для выполнения ГТО следует использовать предназначенные для этого материалы; применение других материалов может вызвать значительное снижение его производительности или привести к образованию неплотностей, и в ГТО будет постоянно попадать вода.

Гравийный ГТО

Это один из вариантов грунтового теплообменника, который применяли, когда еще не существовало трубных обменников.

Выполнить гравийный ГТО достаточно сложно, — здесь требуются особая тщательность и усердие, чтобы обеспечить заданные параметры работы и предотвратить образование затхлого запаха.

Основой ГТО является слой гравия, что наряду с функцией охлаждения летом и предыдущего подогрева воздуха зимой, выполняет роль своеобразного фильтра для воздуха, подаваемого в дом. Большая часть загрязнителей воздуха задерживается в слое теплообменника, поэтому время от времени гравий нужно очищать.

Гравийный обменник отличается достаточно высокой продуктивностью. Правильно выполненный ГТО гарантированно обеспечивает подачу и свежего, профильтрованного воздуха в дом.

Однако ГТО имеет и ряд недостатков, о которых стоит помнить.

Гравийный ГТО отделен от грунта только геотканью, поэтому есть опасность утечки в обменник воды и даже попаданию грызунов и насекомых. Наличие подповерхностных вод на глубине менее 2 м от поверхности почвы практически делает невозможным применение гравийного ГТО: пропитка водой будет блокировать его работу, к тому же станет фактором интенсивного затхлого запаха, поэтому придется обновлять содержимое обменника.

Гравийный слой не может работать непрерывно; его рабочий режим нужно разделить на два этапа – 12 часов функционирования и 12 часов восстаноления гравийного слоя. Восстановление заключается в повторном отборе гравийным слоем тепла окружающей почвы. Конечно же, для трубного обменника также рекомендуется режим работы с перерывами, однако в трубных теплообменниках тепло регенерируется значительно быстрее, чем в гравийном с несколькими тоннами гравия.

Если гравийный слой хорошо не промыть перед укладкой, или, если в ходе эксплуатации он намокнет (вследствие осадков или подъема грунтовых вод), то ГТО может стать источником затхлого «​​подвального» ​​запаха.

Гравийный или безмембранный ГТО нельзя располагать там, где имеет место внешняя нагрузка, например вследствие автомобильного движения.

Повреждение верхнего слоя обменника сдавливанием может привести к снижению производительности и насыщения влагой и, в свою очередь, к необходимости дорогостоящего ремонта.

Гравийный слой характеризуется очень большим сопротивлением потоку воздуха, поэтому в большинстве случаев ГТО приходится оборудовать вспомогательным вентилятором мощностью до нескольких сотен ватт (дополнительные затраты энергии).

Потери на опорах воздуху в ГТО при недостаточно тщательно разработанного проекта вентиляционной системы дома и недостаточно точных расчетов.

Порой неправильно подобранные вентиляционный узел и внутренние каналы могут быть фактором слищком маленького притока свежего воздуха в помещения. Поэтому, выполняя гравийный ГТО, необходимо установить вспомагательный вентилятор (соединенный с рекуператором, который преодолевает собственное сопротивление гравийного слоя). Однако вентилятор существенно снижает энергосберегающие характеристики системы, в частности дополнительно потребляет энергию, тогда как для эксплуатации трубных теплообменников вполне достаточно мощности вентилятора самого рекуператора. Определяясь с конструкцией гравийного ГТО, следует проконсультироваться со специалистом, особенно в отношении сопротивлений собственно ГТО и сопротивлений системы вентиляции.

И тем не менее польза от эффективно организованного ГТО — ощутимая. Летом к помещениям, в которых установлены рекуператор с байпасом, подается охлажденный воздух (температура которого на 8-15 ° С ниже температуры наружного воздуха).

Зимой (если система с рекуператором) воздуха попадает на центральный вентиляционный узел уже предварительно подогретым, эффективно предотвращает образование инея на теплообменнике рекуператора и выключению его электронной системой защиты от замерзания. Благодаря этому не нужно монтировать в систему рекуператора дополнительный энергозатратный электрический калорифер. Главный результат — теплообменник обеспечивает эффект «бесплатной» климатизации.

Не следует забывать, что в так называемые переходные периоды, грунтовой теплообменник надо выключать. Наружный воздух в эти периоды убирается «нормальним» забирающим устройством, расположенным на стене дома.

После засыпки и выравнивания отдельных слоев гравия, прокладки вентиляционных трубопроводов и изоляции верхнего слоя обменника, весь гравийный слой засыпают почвой толщиной около 80 см.

Безмембранный ГТО

В безмембранном теплообменнике соединяются отдельные свойства трубного и гравийного ГТО. Принцип его выполнения заключается в установлении слоя полимерных плит на ровном слое гравия.

Плиты устанавливают на «ножках», опирающихся на поверхность гравийного слоя (гравийной подсыпки). Воздух движется не сквозь гравийный слой (как в гравийном ГТО), а над ним — между гравием и плитами.

Безмембранный обменник будет гарантированно функционировать длительное время без необходимости регенерации, максимально используя тепло почвы.

В отличии от гравийного ГТО, безмембранный не создает больших сопротивлений потоку воздуха.

Остановив выбор на безмембранном теплообменнике, следует помнить:

установку ГТО следует доверить специалистам с опытом, которые будут пользоваться соответствующим оборудованием. Изготовление теплообменника собственноручно может закончиться его повреждением и значительным снижением продуктивности;

безмембранный ГТО не является плотной конструкцией, поэтому его нельзя применять в местах, где случается повышение уровня грунтовых вод или вероятность затопления атмосферными осадками;

очищают безмембранные ГТО (при необходимости) так же, как и гравийный (выкапывание — промывание — повторная укладка). опубликовано econet.ru

econet.ru

Грунтовый теплообменник своими руками

Существует несколько видов грунтовых теплообменников, которые могут использоваться в настоящее время. Возможность обустройства своими руками, хорошая эффективность, а также простота самой конструкции сделали этот тип вентиляции очень популярным для обустройства в частном доме.

Описание системы

На сегодняшний день точно известно, что на территории всех стран СНГ температура грунта на глубине около двух метров остается практически неизменной. Круглый год примерная температура грунта составляет +10 градусов по Цельсию. Небольшие изменения наблюдаются в зависимости от региона, но они обычно не превышают двух градусов. Установка грунтовых теплообменников подразумевает под собой использование данной бесплатной энергии. Таким образом, в теплое время года такая вентиляция будет охлаждать воздух внутри помещения, а в зимний период, наоборот, подогревать его. Кроме того, дополнительное тепло может помочь сберечь температуру, которая создается за счет других обогревательных элементов.

теплообменник для дома жидкостный

На сегодняшний день грунтовой теплообменник чаще всего используется вместе с рекуператором. Рекуператор - это теплообменное устройство, которое предназначено для нагрева холодного воздуха за счет вытяжного теплого. Кроме того, в его систему входят вентиляторы, фильтры, трубопровод и нагревающее устройство.

Использование системы

Такая схема грунтового теплообменника позволяет получать воздух из грунта уже несколько подогретым, что помогает экономить некоторое количество энергии, которое ушло бы на работу рекуператора. Наличие такой воздушной системы для обогрева поможет также сэкономить электроэнергию и конструкцию рекуператора. В данном случае имеется в виду, что внутри трубопровода не будет образовываться конденсат, так как температура воздуха, который будет проходить по трубам, будет все время примерно одинаковая. Проблема с конденсатом может возникнуть лишь в том случае, когда в работу включается рекуператор, но при этом в него будет поступать изначально морозный воздух.

Влияние климата на вентиляцию

Эффективность грунтового теплообменника для вентиляции достаточно сильно зависит от климата, который наблюдается в регионе. Если говорить о климате на территории стран СНГ, то установка теплообменника может помочь в подогреве или охлаждении воздуха в районе от 5 до 20 градусов по Цельсию. Эффективность самой же системы будет напрямую зависеть от того, насколько велика разница температур между грунтом и воздухом. Чем больше разница - тем эффективнее работает система. Из-за данного эффекта грунтовый теплообменник для вентиляции помещения является эффективным средством как зимой, так и летом. Во время жары система может обеспечить снижение температуры с 30 до 20 градусов. В морозную погоду температура может увеличиваться с -20 до 0 градусов.

теплообменник для дома

При расчетах грунтового теплообменника для вентиляции нужно брать во внимание и то, что весной и осенью влияние такой вентиляции на температуру практически отсутствует. Это обосновано тем, что температуры окружающего воздуха и грунта слишком близки по значению, из-за чего обмен воздуха существенно замедляется. В некоторых же случаях такая система может и вовсе работать в отрицательном режиме. К примеру, температура в помещении составляет 12 градусов по Цельсию, а наличие теплообменника будет уменьшать ее до 8 градусов. Принимая во внимание данный факт, необходимо обустраивать грунтовый теплообменник своими руками таким образом, чтобы его можно было отключать или же перекрывать для прямого прохождения воздуха.

Основные типы системы

В настоящее время известно о двух основных видах такой системы - это трубный и бесканальный теплообменник. При обустройстве бесканального типа системы будет применяться подземный слой, через который будет проходить воздух. Трубный, или же канальный тип подразумевает наличие труб для монтажа грунтового теплообменника, по которым будет проходить воздух. Уложены они должны быть также под землей.

трубы для теплообменника

Объединяет эти два типа то, что основной канал подводящего типа обязательно должен быть соединен с вентиляцией. Основное требование, о котором нужно помнить, заключается в том, что в системе должен быть предусмотрен механизм, позволяющий переключаться между двумя режимами. При первом режиме будет использоваться прямой приток воздуха с улицы, при втором режиме работы будет использоваться теплообменник.

Канальный теплообменник

При выборе между воздушными грунтовыми теплообменниками для частного дома лучше выбрать именно этот вариант. Он, конечно, требует больше времени и средств, но и является более эффективным. Для того чтобы изготовить такой тип вентиляции, необходимо уложить систему труб в подготовленную траншею в земле. В среднем длина трубопровода составляет от 15 до 50 метров. Выбор зависит лишь от возможностей и площади.

трубы для грунтового теплообменника

Здесь важно помнить о том, что трубы для грунтового теплообменника могут поворачиваться, так как это практически не влияет на движение воздуха. Кроме того, чем длиннее будет система, тем эффективнее она будет работать, что также очень важно учитывать. Обустройство короткого обменника практически не имеет смысла.

Выбор труб для укладки

Как уже было сказано, для эффективного использования системы она должна иметь большую длину. Если площадь участка вокруг дома позволяет, то можно уложить всего одну трубу вокруг дома. Если пространство ограничено, то можно воспользоваться параллельной укладкой. Диаметр труб для нормального функционирования системы должен быть от 200 до 250 миллиметров.

слой изоляции для теплообменника

Отличным выбором являются полипропиленовые трубы. При проведении расчетов грунтового теплообменника нужно знать еще и о том, что можно улучшить процесс обмена теплом, если уменьшить толщину стенок и увеличить их площадь. Исходя из этого, можно использовать гофрированный материал. В таком случае тепло вовсе не будет задерживаться в грунтовой системе. Еще очень важно обустроить уклон системы примерно на 2 % в любую сторону. Небольшой уклон в данном случае необходим, чтобы конденсат, который будет образовываться в очень жаркую погоду, мог без проблем стекать.

Сток и другие элементы системы

Для того чтобы эффективно удалять конденсат из системы, необходимо оборудовать трубопровод не только уклоном, но и создать небольшое отверстие на нижней отметке трубы. Для стока жидкости необходимо обустроить дренажный колодец или же сделать вывод прямо в землю. Если на участке наблюдается низкий уровень грунтовых вод, то необходимо изготовление песчаной подушки для системы. Конец трубы, который располагается на участке, должен быть снабжен фильтром. Кроме того, он должен быть установлен выше уровня снега, который выпадает в зимний период.

При обустройстве грунтового теплообменника своими руками нужно знать, что если в регионе снег является редким явлением, то высота трубы, которая выступает над землей, должна быть не менее 1,5 метра. Это необходимо сделать в качестве защиты от радона - радиоактивного почвенного газа.

На конец трубы должен быть установлен воздухозаборник. Этот элемент также должен быть оснащен фильтром и прочной металлической сеткой. Конец трубы должен быть установлен и защищен таким образом, чтобы в него не попадали осадки, листья, а также не могли проникнуть никакие животные, птицы и т. д. Если есть такая возможность, то этот элемент устанавливается как можно дальше от любых источников, которые могут повлиять на качество воздуха. Минимальное требуемое удаление - 10 метров.

Бесканальный тип

Для того чтобы своими руками обустроить такой тип теплообменника, необходимо выкопать углубление, длина которого должна составлять 3-4 метра, а глубина - 80 см. Кроме того, данный котлован должен быть наполнен гравием, а сверху закрыт пенобетонным покрытием. Такая конструкция необходима для того, чтобы температура внутри котлована не отличалась от температуры грунта на углублении до 5 метров. После того как этот этап будет пройден, необходимо обустроить вывод трубы, по которой будет проходить воздух.

схема теплообменника для дома на сваях

Что касается изготовления данной трубы, то этот процесс ничем не отличается от изготовления его в прошлом варианте. Естественно, другая труба должна соединять специальный теплообменный слой котлована и вентиляцию частного дома. После этого циркуляция воздуха начнется по наиболее простой схеме. Кроме того, воздух будет не только увлажняться, но еще и очищаться. Исходя из этого, можно утверждать, что бесканальный тип лучше в плане фильтрации воздуха, а трубный, или же канальный тип более эффективен для подогрева или охлаждения.

Особенности системы

Бесканальный тип, или же гравийный теплообменник характеризуется тем, что он нуждается в восстановлении своих функций. Кроме того, монтировать его запрещается в тех местах, где наблюдается воздействие внешних нагрузок, к примеру в месте проезда автомобильного транспорта. Еще одна особенность заключается в том, что если гравий, который предназначается для укладки, не промыть, то после обустройства системы и начала циркуляции воздуха в помещении может возникнуть неприятных "подвальный" запах. Та же проблема может возникнуть и в том случае, если гравийный слой намокнет из-за атмосферных осадков или же из-за подъема грунтовых вод, к примеру.

Недостатки

Если повредить поверхностный слой такого обменника, то это приведет к снижению его эффективности, а также к возможному насыщению влагой. Все это потребует проведения ремонтных работ. При обустройстве обменника своими руками именно такого типа нужно также знать то, что слой гравия является как теплообменным пунктом, так и препятствием для прохождения воздуха. Из-за этого в системе потребуется установить дополнительный источник нагнетания воздуха - вентилятор с достаточно мощностью (несколько сотен Ватт). Естественно, что это дополнительные затраты как на установку и покупку, так и на последующую оплату электроэнергии. Из-за этого приходится достаточно тщательно проводить расчеты системы. Тут можно добавить, что расчеты жидкостного грунтового теплообменника несколько проще, чем гравийного, хотя его обустройство и конструкция более сложные.

Безмембранный тип

На сегодняшний день появились такие типы грунтовых теплообменников (ГТО), как безмембранные. Они представляют собой комбинацию из двух предыдущих типов систем. Основная суть установки такого устройства заключается в том, что необходимо смонтировать ровный слой полимерных плит поверх ровного слоя гравия.

Монтаж системы

Плиты необходимо смонтировать на "ножки", которые будут опираться на гравийный слой. Таким образом, получится, что воздух будет двигаться не сквозь слоя гравия, как при бесканальном типе, а между слоем плит и слоем гравия. Основное преимущество заключается в том, что использовать такой теплообменник можно достаточно длительный срок без регенерации гравийного слоя.

трубы для теплообменника гофрированные

Обычный слой гравия может работать лишь 12 часов, после чего необходимо 12 часов "отдыха". Во время такого отдыха слой гравия будет забирать тепло у почвы, чтобы потом передать его в вентиляцию. При использовании плит эти рамки достаточно сильно упрощаются. Еще одно отличие безмембранного ГТО заключается в том, что будет отсутствовать сильное препятствие циркуляции воздуха. При бесканальном типе обменника гравий будет являться естественным препятствием воздушному потоку, из-за чего приходится оборудовать систему дополнительными вентиляторами чаще всего.

Основная проблема использования такого грунтового теплообменника для вентиляции своими руками заключается в том, что система не является сплошной, а потому применять ее полностью запрещается в тех регионах, где наблюдается повышенный уровень грунтовых вод или же имеется шанс того, что систему затопит атмосферными осадками.

fb.ru

Грунтовый теплообменник для системы вентиляции с рекуперацией.

Хотелось рассказать об эксплуатации системы вентиляции с рекуперацией к которой подключен грунтовый теплообменник. А именно о Грунтовом теплообменнике.

В одном из домов Проект 500.

был закопан грунтовый теплообменник.

 

Закопано две ветки трубы диаметром 200мм, общей длиной 80м, закопан с небольшим уклоном в сторону дома, где установлен конденсатосборник, для сбора конденсата в летнее время, при охлаждении воздуха. Труба двухстенная, снаружи гофрированная может выдерживать большие нагрузки и закапываться на грубину до 10 м (материал ПВД), внутри гладкая ПНД. Труба закована на глубину 1,5-1,8 м

Грунтовый теплообменник создавался для подогрева входящего воздуха перед рекуператором, чтобы тот не подвергался заморозки и критическим температурам.

Естественно перед входом в Грунтовый теплообменник необходимо поставить фильтр

Предварительно это выглядит так. (пока не облагорожено, далее это будет тумба отделанная клинкером)

В доме

В доме установлена приточно-вытяжная система с рекуперацией electrolux star epvs-1300 (мощность выбрана из-за протяженных трасс, и падения давления)

Так же установлен подпорный вентилятор на грунтовый теплообменник

Система автоматики позволяет управлять установленными заслонками, а именно:

1. при температуре наружного воздуха от +5 до +25 воздух подается с улицы без грунтового теплообменника, при любой другой температуре воздух идет через грунтовый теплообменник

2. дом разделен на три зоны, 1- спальни на 2-ом этаже, 2- комнаты на 1-ом этаже, 3- гостинная, любую зону можно отключить, например ночью гостинная обычно не нужна соответсвенно вентиляция работает только в спальнях, либо днем когда в спальнях никого нет, вентиляция работает в гостинной

Среднее кол-во воздуха проходящее через грунтовый теплообменник — 600 м3 в час

Подача воздуха идет в жилые комнаты, забор воздуха из санузлов и кухни. Кухонная вытяжка над плитой не подключена к рекуператору.

При этом при температуре на улицы до -15, после грунтового теплообменника до рекуператора стабильная температура +9 — +11 градусов

Система вентиляции работает не постоянно, дом наездами, когда никого нет естественно её отключают. Но режим работы в новогодние праздники более двух недель показал стабильные температуры. Конечно к концу зимы грунт при постоянном режиме промерзнет, но в данном варианте длина трубы рассчитана на этот режим работы, при постоянной эксплуатации она нужна чуть длиннее, хотя и морозы с сильным минусом не постоянны, и более недели не держаться.

Рассматривать температуру после рекуператора не будем, т.к. и так понятно, что при расходе воздуха в 600 кубов при рекуператоре рассчитанном на 1300, КПД будет максимальный, и реально разница составляет максимум 2 градуса.

 

Для информации чтобы не возникало вопросов по этой теме: в систему после рекуператора установлен догрев от отопительного котла

Сделано это для того, чтобы быстро прогреть воздух в доме до +22 который при отсутствии людей может быть понижен до 18 гр, для этого подачу воздуха прогреваем до +26.

 

Итоги: Грунтовый теплообменник показал хорошую работу в зимний период, полностью заменил догрев входящего воздуха до плюсовых температур.

Расчет длины рекуператора можно посмотреть тут

p.s. как будет работать система охлаждения летом на основе грунтового теплообменника узнаем чуть позже.

 

  

 

sdinfo.ru

Грунтовый теплообменник

Подключение грунтового теплообменника совершенствует систему рекуперации тепла вентиляционной установки.

При этом атмосферный воздух проходит через пластиковую трубу длиной от 35 до 50 м, проложенную в грунте на глубине около 1,50 м. В зимнее время при минусовых температурах воздух за счет фунтового тепла предварительно прогреется примерно на 6—8 °С, так что дополнительный нагрев приточного воздуха возможен только зимой при глубоко минусовых температурах воздуха. Летом атмосферный воздух за счет подвода по подземной трубе, наоборот, охладится примерно на 8—12 °С. При этом на рынке уже доступны системы (например, Fa. Helios), которые автоматически управляют способом подачи приточного воздуха в зависимости от температур наружного воздуха и у поверхности земли.Пластиковые трубы (по возможности из полиэтилена) диаметром от 150 до 200 мм прокладываются в грунте под уклоном, что позволяет собирать и отводить выделяющийся конденсат. В домах, оборудованных подвалами, конденсат можно собирать в подвале и отводить по трубопроводу вместе со сточными водами. В зданиях, которые подвалами не оборудованы, конденсат можно собирать в специальной шахте и отсасывать оттуда специальным насосом.В качестве альтернативы продуваемому воздухом грунтовому теплообменнику можно подводить приточный воздух через рассольный теплообменник. Для этого сравнительно тонкая U-образная труба (1") прокладывается под землей (примерно на 100 м, минимальное расстояние между коленами трубы — 50 см) и подключается к водно-воздушному теплообменнику, который в зимнее время осуществляет предварительный нагрев приточного воздуха, и, соответственно, в летнее время охлаждает приточный воздух. В случае этого варианта приточный воздух не должен проходить большие расстояния под землей, так что нет необходимости в принятии специальных гигиенических и технических мер, связанных с выпадением и отводом конденсата. Для этой цели в рассольный контур встраивается циркуляционный насос. Эти дополнительные энергетические затраты примерно соответствуют падению энергопотребления вентиляционной установки, т. к. падение давления в продуваемом воздухом грунтовом теплообменнике требует более высокой мощности вентилятора.Все фунтовые теплообменники представляют собой проекты, связанные с большими затратами, как трудовыми, так и финансовыми, хотя бы потому, что они связаны с необходимостью выполнения большого объема земляных работ. Если у вас уже обжитой и обустроенный участок, это сложно и головокружительно дорого— прорыть в участке траншею длиной от 30 до 50 м. Однако, если вам и так предстоят земляные работы (например, возникла необходимость ремонта или замены подземных трубопроводов центрального водоснабжения и других инженерных коммуникаций или же вам все равно надо заново разбивать сад), тогда предусмотреть такое усовершенствование вентиляционной системы будет благоразумно.

www.uniexo.ru

грунтовый теплообменник - патент РФ 2472076

Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года. Технический результат - снижение затрат на создание и эксплуатацию грунтовых теплообменников за счет использования уже существующих горных выработок - колодцев, вертикальных и наклонных стволов шахт, горизонтальных подземных выработок а также снижение энергозатрат на преобразование температуры. Достигается технический результат за счет того, что грунтовый теплообменник включает теплообменник потребителя, сопряженный с реверсивным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела по трубам, причем подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами. Горная выработка может иметь наклон в пределах от 0 до 90 градусов к горизонтальной плоскости. 1 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2472076

Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года.

Известны два типа замкнутых теплообменников, расположенных в грунтовом массиве, использующих теплоту грунта и грунтовых вод с помощью трубопроводов, образующих замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров (См. статья "Использование низкопотенциальной тепловой энергии земли в теплонасосных системах" Васильев Г.П., Научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ», д.т.н.. Председатель Совета директоров ОАО « ИНСОЛАР-ИНВЕСТ» Н.В.Шилкин, инженер, НИИСФ):

1. Горизонтальные грунтовые теплообменники, представляющие собой отдельные трубы, расположенные в предварительно вырытых траншеях, положенные относительно плотно и соединенные между собой последовательно или параллельно.

Недостатком горизонтального грунтового теплообменника является ограниченная область применения ввиду необходимости использования больших площадей поверхности земли для их устройства.

2. Вертикальные грунтовые теплообменники, представляющие собой отдельные трубы, расположенные в пробуренных в земной коре скважинах, также соединенные между собой последовательно или параллельно.

Недостатком вертикальных грунтовых теплообменников является высокие затраты на строительство и невозможность обслуживания.

Также известен тепловой аккумулятор, приняты авторами за прототип (См. (19) RU (11) 2359183 (13) C1 (51) МПК F24J 3/08 (2006.01) (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2011 - действует; (21), (22) Заявка: 2007141726/06, 09.11.2007 (24) Дата начала отсчета срока действия патента: 09.11.2007; (45) Опубликовано: 20.06.2009; (72) Автор(ы): Ермаков Сергей Анатольевич (RU), (73) Патентообладателей): Ермаков Сергей Анатольевич (RU), (54) ТЕПЛОВОЙ АККУМУЛЯТОР), включающий тепловой аккумулятор, который содержит надземный теплообменник потребителя, сопряженный по тепловому потоку с реверсивным холодильным устройством, а также заглубленный в грунтовой массив подземный теплообменник, совместно с соединяющими теплообменники трубопроводами, образующими замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, в котором подземный теплообменник выполнен в виде опускной и подъемной труб; опускная труба свободно сообщается с надземным теплообменником, а подъемная труба сообщается с надземным теплообменником через устройство, содержащее накопительно-вытеснительный сосуд с устройствами.

Недостатками известного технического решения также является ограниченная область применения, высокая стоимость изготовления и невозможность периодического обслуживания грунтового теплообменника в процессе эксплуатации.

Изобретение направлено на расширение области применения и снижение затрат на создание и эксплуатацию грунтовых теплообменников.

Технический результат изобретения заключается в использовании уже существующих горных выработок - колодцев, вертикальных и наклонных стволов шахт, горизонтальных подземных выработок действующих или переставших давать добычу горных предприятий для размещения в них грунтовых теплообменников, а также снижение энергозатрат на преобразование температуры.

Достигается технический результат за счет того, что грунтовый теплообменник включает теплообменник потребителя, сопряженный с реверсивным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела по трубам, причем подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами. Горная выработка может иметь наклон в пределах от 0 до 90 градусов к горизонтальной плоскости.

На фиг.1 представлен разрез вертикальной выработки.

На фиг.2 представлен разрез наклонной выработки.

На фиг.3 представлен разрез горизонтальной выработки.

На фиг.4 представлен поперечный разрез грунтового теплообменника.

Предлагаемый грунтовый теплообменник устроен следующим образом.

Основными узлами предлагаемого грунтового теплообменника являются: теплообменник потребителя 1, сопряженный по тепловому потоку 2 с реверсивным холодильным устройством 3, и заглубленный в грунтовой массив 4 подземный теплообменник 5, представляющий собой горную выработку 6, боковые стенки которой закреплены крепью 7.

По длине выработки 6 в радиальном направлении под различными углами расположены трубопроводы 8, представляющие собой последовательно или параллельно соединенные трубы.

Радиально направленные трубопроводы 8 по длине выработки сгруппированы в ярусы 9 (этажи или сегменты). Ввиду необходимости восполнения низкопотенциальной энергии грунтового массива 4 необходимо, чтобы трубопроводы были расположены максимально далеко друг от друга. Для этого радиально расположенные трубопроводы 8 каждого яруса 9 расположены со сдвигом на некоторый угол относительно друг друга в плоскости, перпендикулярной оси выработки.

Теплообменник потребителя 1 соединен с подземным теплообменником 5 соединительным трубопроводом 10.

Теплообменник потребителя 1 и подземный теплообменник 5 вместе с соединительным трубопроводом 10 представляют собой замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров. Циркуляция рабочего тела по замкнутой системе обеспечивается циркуляционным устройством 11.

Изготовление подземного теплообменника 5 осуществляется как с использованием специально построенных (колодцы, шурфы, штольни), так и существующих горных выработок - вертикальные и наклонные стволы шахт, горизонтальные подземные выработки действующих или переставших давать добычу горных предприятий.

В зависимости от типа используемых труб и крепости грунтового массива 4 размещение трубопровод 8 осуществляется в предварительно пробуренных скважинах или посредствам вдавливания труб в грунт.

Предлагаемый грунтовый теплообменник работает следующим образом.

Циркулируя по замкнутой системе труб теплообменника потребителя 1, подземного теплообменника 5 и соединительного трубопровода 10 под воздействием циркуляционного устройства 11, рабочее тело (жидкость) поочередно подвергается температурному воздействию в обоих теплообменниках.

Проходя по трубопроводам 8 подземного теплообменника 5, рабочее тело получает тепловую энергию грунтового массива 4, в котором расположен теплообменник 5, и приобретает температуру грунта.

При условии расположения трубопровода 8 подземного теплообменника 5 ниже глубины промерзания эта температура всегда остается положительной и колеблется примерно от +5°С в зимний период до +18°С в летний период.

Поступая к теплообменнику потребителя 1, рабочее тело отдает накопленную в подземном теплообменнике 5 энергию в виде температуры. При этом рабочее тело получает энергию теплообменника потребителя 1 и приобретает соответствующую температуру, после чего опять поступает в трубопроводы 8 подземного теплообменника 5.

Этот цикл постоянно повторяется.

В совокупности с реверсивным холодильным устройством 3 грунтовый теплообменник позволяет значительно снизить энергозатраты.

Например, в летний период, когда температура воздуха на открытой поверхности достигает 40°C, и иногда и более, необходимо значительное количество энергии для преобразования температуры воздуха с 40°C до, например, 25°C.

Использование предлагаемого грунтового теплообменника позволяет расширить область его применения, значительно снизить затраты на изготовление, в случае необходимости производить эксплуатационное обслуживание, а также позволяет значительно снизить энергозатраты при работе реверсивного холодильного устройства.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Грунтовый теплообменник, включающий теплообменник потребителя, сопряженный с реверсивным холодильным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела, отличающийся тем, что подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами.

2. Грунтовый теплообменник по п.1, отличающийся тем, что горная выработка может иметь наклон в пределах от 0 до 90° к горизонтальной плоскости.

www.freepatent.ru

Грунтовый теплообменник

Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года. Технический результат - снижение затрат на создание и эксплуатацию грунтовых теплообменников за счет использования уже существующих горных выработок - колодцев, вертикальных и наклонных стволов шахт, горизонтальных подземных выработок а также снижение энергозатрат на преобразование температуры. Достигается технический результат за счет того, что грунтовый теплообменник включает теплообменник потребителя, сопряженный с реверсивным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела по трубам, причем подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами. Горная выработка может иметь наклон в пределах от 0 до 90 градусов к горизонтальной плоскости. 1 з.п. ф-лы, 4 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года.

Известны два типа замкнутых теплообменников, расположенных в грунтовом массиве, использующих теплоту грунта и грунтовых вод с помощью трубопроводов, образующих замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров (См. статья "Использование низкопотенциальной тепловой энергии земли в теплонасосных системах" Васильев Г.П., Научный руководитель ОАО «ИНСОЛАР-ИНВЕСТ», д.т.н.. Председатель Совета директоров ОАО « ИНСОЛАР-ИНВЕСТ» Н.В.Шилкин, инженер, НИИСФ):

1. Горизонтальные грунтовые теплообменники, представляющие собой отдельные трубы, расположенные в предварительно вырытых траншеях, положенные относительно плотно и соединенные между собой последовательно или параллельно.

Недостатком горизонтального грунтового теплообменника является ограниченная область применения ввиду необходимости использования больших площадей поверхности земли для их устройства.

2. Вертикальные грунтовые теплообменники, представляющие собой отдельные трубы, расположенные в пробуренных в земной коре скважинах, также соединенные между собой последовательно или параллельно.

Недостатком вертикальных грунтовых теплообменников является высокие затраты на строительство и невозможность обслуживания.

Также известен тепловой аккумулятор, приняты авторами за прототип (См. (19) RU (11) 2359183 (13) C1 (51) МПК F24J 3/08 (2006.01) (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ Статус: по данным на 18.02.2011 - действует; (21), (22) Заявка: 2007141726/06, 09.11.2007 (24) Дата начала отсчета срока действия патента: 09.11.2007; (45) Опубликовано: 20.06.2009; (72) Автор(ы): Ермаков Сергей Анатольевич (RU), (73) Патентообладателей): Ермаков Сергей Анатольевич (RU), (54) ТЕПЛОВОЙ АККУМУЛЯТОР), включающий тепловой аккумулятор, который содержит надземный теплообменник потребителя, сопряженный по тепловому потоку с реверсивным холодильным устройством, а также заглубленный в грунтовой массив подземный теплообменник, совместно с соединяющими теплообменники трубопроводами, образующими замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, в котором подземный теплообменник выполнен в виде опускной и подъемной труб; опускная труба свободно сообщается с надземным теплообменником, а подъемная труба сообщается с надземным теплообменником через устройство, содержащее накопительно-вытеснительный сосуд с устройствами.

Недостатками известного технического решения также является ограниченная область применения, высокая стоимость изготовления и невозможность периодического обслуживания грунтового теплообменника в процессе эксплуатации.

Изобретение направлено на расширение области применения и снижение затрат на создание и эксплуатацию грунтовых теплообменников.

Технический результат изобретения заключается в использовании уже существующих горных выработок - колодцев, вертикальных и наклонных стволов шахт, горизонтальных подземных выработок действующих или переставших давать добычу горных предприятий для размещения в них грунтовых теплообменников, а также снижение энергозатрат на преобразование температуры.

Достигается технический результат за счет того, что грунтовый теплообменник включает теплообменник потребителя, сопряженный с реверсивным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела по трубам, причем подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами. Горная выработка может иметь наклон в пределах от 0 до 90 градусов к горизонтальной плоскости.

На фиг.1 представлен разрез вертикальной выработки.

На фиг.2 представлен разрез наклонной выработки.

На фиг.3 представлен разрез горизонтальной выработки.

На фиг.4 представлен поперечный разрез грунтового теплообменника.

Предлагаемый грунтовый теплообменник устроен следующим образом.

Основными узлами предлагаемого грунтового теплообменника являются: теплообменник потребителя 1, сопряженный по тепловому потоку 2 с реверсивным холодильным устройством 3, и заглубленный в грунтовой массив 4 подземный теплообменник 5, представляющий собой горную выработку 6, боковые стенки которой закреплены крепью 7.

По длине выработки 6 в радиальном направлении под различными углами расположены трубопроводы 8, представляющие собой последовательно или параллельно соединенные трубы.

Радиально направленные трубопроводы 8 по длине выработки сгруппированы в ярусы 9 (этажи или сегменты). Ввиду необходимости восполнения низкопотенциальной энергии грунтового массива 4 необходимо, чтобы трубопроводы были расположены максимально далеко друг от друга. Для этого радиально расположенные трубопроводы 8 каждого яруса 9 расположены со сдвигом на некоторый угол относительно друг друга в плоскости, перпендикулярной оси выработки.

Теплообменник потребителя 1 соединен с подземным теплообменником 5 соединительным трубопроводом 10.

Теплообменник потребителя 1 и подземный теплообменник 5 вместе с соединительным трубопроводом 10 представляют собой замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров. Циркуляция рабочего тела по замкнутой системе обеспечивается циркуляционным устройством 11.

Изготовление подземного теплообменника 5 осуществляется как с использованием специально построенных (колодцы, шурфы, штольни), так и существующих горных выработок - вертикальные и наклонные стволы шахт, горизонтальные подземные выработки действующих или переставших давать добычу горных предприятий.

В зависимости от типа используемых труб и крепости грунтового массива 4 размещение трубопровод 8 осуществляется в предварительно пробуренных скважинах или посредствам вдавливания труб в грунт.

Предлагаемый грунтовый теплообменник работает следующим образом.

Циркулируя по замкнутой системе труб теплообменника потребителя 1, подземного теплообменника 5 и соединительного трубопровода 10 под воздействием циркуляционного устройства 11, рабочее тело (жидкость) поочередно подвергается температурному воздействию в обоих теплообменниках.

Проходя по трубопроводам 8 подземного теплообменника 5, рабочее тело получает тепловую энергию грунтового массива 4, в котором расположен теплообменник 5, и приобретает температуру грунта.

При условии расположения трубопровода 8 подземного теплообменника 5 ниже глубины промерзания эта температура всегда остается положительной и колеблется примерно от +5°С в зимний период до +18°С в летний период.

Поступая к теплообменнику потребителя 1, рабочее тело отдает накопленную в подземном теплообменнике 5 энергию в виде температуры. При этом рабочее тело получает энергию теплообменника потребителя 1 и приобретает соответствующую температуру, после чего опять поступает в трубопроводы 8 подземного теплообменника 5.

Этот цикл постоянно повторяется.

В совокупности с реверсивным холодильным устройством 3 грунтовый теплообменник позволяет значительно снизить энергозатраты.

Например, в летний период, когда температура воздуха на открытой поверхности достигает 40°C, и иногда и более, необходимо значительное количество энергии для преобразования температуры воздуха с 40°C до, например, 25°C.

Использование предлагаемого грунтового теплообменника позволяет расширить область его применения, значительно снизить затраты на изготовление, в случае необходимости производить эксплуатационное обслуживание, а также позволяет значительно снизить энергозатраты при работе реверсивного холодильного устройства.

1. Грунтовый теплообменник, включающий теплообменник потребителя, сопряженный с реверсивным холодильным устройством, заглубленный в грунтовый массив подземный теплообменник, совместно соединяющие теплообменники трубопроводы, образующие замкнутую систему, заполненную рабочим телом в виде жидкости и ее паров, а также устройство, обеспечивающее циркуляцию рабочего тела, отличающийся тем, что подземный теплообменник выполнен в виде горной выработки с пропущенными через ее боковые стены по всей глубине в радиальном направлении последовательно или параллельно соединенными горизонтальными или наклонными трубопроводами.

2. Грунтовый теплообменник по п.1, отличающийся тем, что горная выработка может иметь наклон в пределах от 0 до 90° к горизонтальной плоскости.

www.findpatent.ru