Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

2. Исполнение реле тока и напряжения. Реле максимального и минимального действия. Реле тока и реле напряжения


Электромагнитные реле тока и реле напряжения — Мегаобучалка

Структурная схема электромагнитного реле

Электромагнитное реле (РЭМ) является элементом канала связи электрических цепей, например двух цепей ЭЦ1 и ЭЦ2. Оно может быть представлено структурной схемой, как показано на рис. 6.1а.

Рис. 6.1. Структурная схема электромагнитного реле (а) и изображение электромагнитных приводов (катушек) реле тока КА и реле напряжения KV на электрических схемах (б)

 

 

Входной сигнал управления электромагнитным реле поступает из электрической цепи ЭЦ1 на обмотку включающей катушки электромагнитного привода (см. п. 3.3.1, п. 3.3.2). Входная переменная х у реле тока – электрический ток, у реле напряжения – электрическое напряжение.

Входной сигнал вызывает появление электромагнитной силы тяги в электромагнитном механизме ЭММ (см. п. 3.3.4). Под действием силы тяги якорь ЭММ перемещается, и это перемещение передается коммутирующему контакту КК (см. п. 2.2) с помощью механической передачи с возвратной пружиной (см. п. 3.2.2).

Контактная система электромагнитных реле может содержать от одного до 12 коммутирующих контактов (КК), рассчитанных на длительные постоянные или переменные токидо 16 Ау некоторых реле.

На рис. 6.1б показаны условные обозначения электромагнитных приводов (катушек) реле тока КА и реле напряжения KV.

 

Особенности электромагнитных реле

Реле тока и реле напряжения имеют одинаковую структуру (рис. 6.1а), но функциональные части реле имеют конструктивные отличия. Различаются в исполнении электромагнитные (втягивающие) катушки реле.

У реле тока обмотка катушки выполнена толстым проводом и имеет небольшое количество витков, что обеспечивает малое сопротивление току, протекающему по обмотке. Реле тока применяют для контроля силы тока в электрической цепи (ЭЦ1) и передачи информации о контролируемой величине типа «больше» или «меньше» в другую цепь (ЭЦ2) с помощью коммутирующего контакта (КК).

Сопротивление обмотка катушки реле напряжения большое. Оно создается большим количеством витков тонкого провода. Обмотку обычно включают на полное напряжение сети. Реле напряжения применяют для контроля уровня напряжения в электрической цепи и передачи информации о контролируемой величине в другую цепь.

Различия в конструкциях электромагнитных механизмов реле обусловлены тем, к какой электрической цепи должна быть подключена катушка реле. Если это цепь постоянного тока, то магнитопровод выполняют цельнометаллическим. Катушка удлиненная, относительно небольшого диаметра. Особенности работы реле, его динамические характеристики и характеристика управления определяются свойствами электромагнитного привода постоянного тока (см. п. 3.4, п. 3.5).

Для реле, подключаемого к электрической цепи управления переменного тока, применяют шихтованные магнитопроводы, диаметр катушки увеличивают, а длину уменьшают с целью улучшения отвода тепла от катушки и сердечника (см. п. 3.6.1). Особенности работы реле, его динамические характеристики и характеристика управления определяются свойствами электромагнитного привода переменного тока (см. п. 3.6).

 

Основные параметры электромагнитных реле

Электромагнитные реле характеризуются следующими основными параметрами.

Напряжение (ток) срабатывания реле (хср) – наименьшее значение напряжения на клеммах катушки электромагнитного механизма реле (или наименьшее значение тока в ней), при котором якорь надежно притягивается к сердечнику, а замыкающие контакты переходят из разомкнутого состояния в замкнутое. В паспорте реле напряжения указывается номинальное напряжение, на которое рассчитано включение катушки электромагнитного механихзма реле, несколько превышающее напряжение срабатывания. Этим обеспечивается надежность срабатывания реле.

Напряжение (ток) отпускания реле (хот) – наибольшее напряжение на клеммах катушки электромагнитного механизма реле(или наибольший ток в ней), при котором тяговое усилие, действующее на якорь электромагнитного механизма, уменьшается до значения, необходимого для надежного отпадания якоря от сердечника, а замыкающие контакты переходят из замкнутого состояния в разомкнутое состояние.

Коэффициент возврата реле – отношение напряжения (тока) отпускания к напряжению (току) срабатывания.

Время срабатывания реле (τср)– промежуток времени с момента подачи напряжения срабатывания на катушку реле до момента переключения его контактов.

Время отпускания реле (τот) – промежуток времени с момента снятия напряжения с катушки до момента возвращения контактов в исходное положение.

Уставка реле – величина напряжения или тока, на которую настроено реле и при которой оно срабатывает или отпускает.

Для повышения быстродействия реле применяют специальные схемы подключения обмотки катушки реле к электрической цепи (см. п. 3.7.1). Снижение быстродействия реле может быть осуществлено, если это требуется, также с помощью схемных решений (см. п. 3.7.2).

 

megaobuchalka.ru

Электромагнитные реле тока и напряжения.

Реле для энергосистем.

В схемах защиты энергосистем, крупных и ответственных установок (мощных двигателей, транс­форматоров) широко применяются реле серии ЭТ. Эскиз одного из таких реле представлен на рис.4

 

Рис. 4

 

Магнитопровод 1 шихтуется из листов электротехнической ста­ли. Обмотка реле 2 разбита на две части и позволяет соединять секции параллельно и последовательно. Якорь 3 выполнен из тон­кого листа электротехнической стали и имеет Z-образную форму. При повороте якоря происходит увеличение потока и насыщение якоря даже при токах, близких к току трогания. Это ограничивает момент, развиваемый реле в конце хода якоря. Применение поворотной системы и легконасыщающегося якоря позволяет приблизить тяговый момент к противодействующему и получить высокий коэффициент возврата (0,85). Подвижный кон­такт 5 мостикового типа шарнирно укреплен на рычаге, связанном с валом. Это дает возможность контакту самоустанавливаться. Для устранения вибраций контактов служит масляный демпфер, связан­ный с валом реле. Противодействующая сила создается спиральной пружиной 4. Начальная деформация пружины меняется рычагом 6. Начальное и конечное положения якоря определяются специальны­ми упорами. Грубое регулирование тока срабатывания производится за счет изменения схемы соединения обмоток, а плавное — изменением на­чального натяжения пружины. При переходе с последовательного соединения на параллельное ток срабатывания увеличивается в 2 раза. В 2 раза ток срабатывания можно поднять за счет уве­личения натяга пружины. Таким образом, реле позволяет регули­ровать ток срабатывания в пределах 1—4. Реле выпускаются на ми­нимальные токи срабатывания от 0,05 до 200 А.

Время срабатывания при kЗ³2составляет 0,02 с.

Реле серии ЭТ имеют малое собственное потребление, порядка 0,1 В*А, высокий коэффициент возврата (до 0,85), малое время срабатывания (0,02 с) и высокую точность работы ±5%.

К недостаткам реле следует отнести малую мощность контакт­ной системы, необходимость тщательной регулировки реле во избе­жание вибрации контактов. Мощность контактов на размыкание составляет всего 50 Вт постоянного тока при напряжении 220 В.

Аналогичную конструкцию имеют реле напряжения серии ЭН. Отличие этих реле от реле серии ЭТ заключается в том, что об­мотки выполнены с большими числами витков и сопротивлениями и рассчитаны на подключение к источнику напряжения. Потребляе­мая мощность при этом возрастает до 1 В*А. Все остальные пара­метры такие же, как у реле серии ЭТ. Реле серии ЭН могут ра­ботать и как максимальные, реагируя на повышение напряжения выше напряжения уставки, и как минимальные, реагируя на пони­жение напряжения ниже напряжения уставки.

Как известно в электромагнитах переменного тока ток в обмотке сильно зависит от положения якоря. В клапанных элек­тромагнитах ток в притянутом состоянии в десятки раз меньше, чем при отпущенном якоре. Это затрудняет создание максимальных реле напряжения на базе клапанной системы, так как при напря­жениях, близких к напряжению срабатывания, через обмотку про­текает большой ток, выделяется мощность, в сотни раз превышаю­щая мощность в обмотке при притянутом якоре. Приходится сильно увеличивать габариты катушки, чтобы рассеивать большую мощ­ность, выделяемую при отпущенном якоре. Большим преимуществом реле серии ЭН является относительно небольшое изменение маг­нитной проводимости, в результате чего ток в обмотках мало ме­няется при повороте якоря. Это дает возможность иметь малые га­бариты обмоток.

 

Реле тока и напряжения для управления электроприводом.

 

В схемах управления и защиты применяется реле постоянного тока серии РЭВ-300 с высоким коэффициентом возврата. Реле этой се­рии выпускаются и как реле напряжения и как реле тока в зави­симости от обмоточных данных. На рис.5 изображено токовое реле.

 

Рис. 5

 

Магнитопровод 1 имеет U-образную форму и выполнен из прутка круглого сечения. Плос­кий якорь 2 вращается на призме, что обеспечивает высокую меха­ническую износостойкость реле. Обмотка 3 выполняется из меди в соответствии с номинальным током реле. Регулирование силы пружины 5 осуществляется гайкой 6. Якорь 2 связан с подвижным контактом 5 с помощью изоляционной пластины 7. Реле имеет два неподвижных контакта 9 и 10. Подвижный контакт 8 соединяется с зажимом 11 с помощью гибкой связи 12. Реле выполняется в ви­де единого блока, который с помощью шпилек 4 может устанавли­ваться на металлических рейках сборной панели.

Высокий коэффи­циент возврата достигается благодаря тому, что конечный зазор может быть достаточно большим (до 5*10-3), а ход якоря может составлять доли миллиметра. В реле тока уставка тока срабатыва­ния регулируется в пределах 30—65% номинального значения путем изменения начального усилия сжатия пружины 5.

В реле напряжения уставка срабатывания меняется в пределах 30—50% Uн. При увеличении сжатия пружины растет напряжение трогания Uтр, увеличивается время трогания согласно уравнению

где Lp — индуктивность и Rр — сопротивление цепи обмотки реле.

С увеличением напряжения трогания Uтр изменяется коэффи­циент возврата реле.

Для увеличения быстродействия реле напряжения рекомендует­ся брать реле на низкое номинальное напряжение (24 или 48 В) и последовательно включать добавочный резистор из константана. Следует отметить, что включение добавочного резистора, если он выполнен из константана, уменьшает зависимость напряжения срабатывания от температуры.

Коэффициент возврата регулируется путем изменения конечно­го зазора. Для реле рис.5 регулировка конечного зазора dк и хода якоря осуществляется с помощью неподвижных контактов 10 и 9. При подъеме контакта 10 зазор dк увеличивается. При опу­скании контакта 9 уменьшается ход якоря. Минимальное значение раствора контактов d2 равно 1,5 мм.

 

Реле защиты схем электропривода.

 

На рис.6 представ­лена упрощенная схема защиты двигателя постоянного тока от ко­ротких замыканий. При повреждении якоря двигателя Я срабаты­вает максимальное мгновенное реле РМ и размыкает свои контак­ты РМ в цепи катушки линейного контактора Л. Якорь последнего отпадает. При этом обесточивается цепь якоря двигателя. Так как ток в якоре стал равным нулю, происходит отпускание реле РМ, контакты его замыкаются и цепь катушки контактора подготавли­вается к следующему включению.

 

Рис.6. Схема включения реле максимального тока.

 

При отключении контактора его блок-контакт БКЛ размыкает­ся, поэтому при замыкании контактов РМ контактор Л не включит­ся вновь. Характерным для схем является возврат реле РМ в исход­ное положение при токе в обмотке, равном нулю. Поэтому к реле максимальной токовой защиты двигателя не предъявляются требо­вания высокого коэффициента возврата.

В целом ряде схем управление производится не с помощью кнопки, а с помощью командоконтроллера КК (рис.6). В этом случае после обесточивания якорной цепи двигателя реле РМ от­пустит свой якорь, и контакты этого реле подадут напряжение на катушку линейного контактора. Произойдет повторное включение на короткое замыкание. При этом последует новое отключение и т. д. В результате повреждений двигатель будет многократно включать­ся в сеть.

Для устранения этого недостатка реле снабжаются специальным устройством, предотвращающим возврат реле в исходное со­стояние после прекращения тока в катушке. Такие реле называют­ся реле без самовозврата, их принцип действия рассмот­рен ниже. Возврат реле в исходное положение после срабатывания возможен либо вручную, либо с помощью специального электромаг­нита (дистанционный возврат). Основными требованиями, предъявляемыми к реле, являются быстрое срабатывание, широкая регулировка тока срабатывания, вибро- и ударостойкость.

Реле могут быть использованы и для защиты от перегрузки. В этом случае выдержка времени, независимая от тока перегрузки, создается отдельным реле времени. Такая защита является несо­вершенной, так как долговечность оборудования зависит не только от величины тока перегрузки, но и от длительности его протека­ния. Более совершенной является тепловая защита.

На рис.7 показано реле серии РЭВ, предназначенное для работы в схемах электропривода переменного тока.

 

 

Рис.7 Реле РЭВ

 

Эти реле используются для защиты от токов короткого замыкания и от пере­грузок (в совокупности с реле времени). В реле используется про­стейшая клапанная система. Для повышения механической износостойкости используется призматическая опора якоря. Реле может иметь и параллельную обмотку. В этом случае оно используется как реле напряжения для защиты от исчезновения питания. Эти же реле могут использоваться как промежуточное реле. Поскольку реле работает на переменном токе, магнитопровод шихтуется из элек­тротехнической стали. Токовые реле в исходном положении работа­ют с разомкнутой магнитной системой. Поэтому короткозамкнутый виток не устанавливается на полюсе. Реле напряжения работают, как правило, при исчезновении питания. Поэтому в исходном положении якорь притянут и находится в таком положении в течение нормальной работы схемы.

Для устранения вибрации якоря на по­люсный наконечник устанавливается короткозамкнутый виток. Ка­тушки токовых реле выполняются на номинальные токи от 2,5 до 600 А. Регулирование тока при данной катушке производится за счет изменения натяжения пружины в весьма широких пределах.

Реле напряжения допускают регулировку срабатывания в пре­делах 70—85% номинального напряжения. Коэффициент возврата лежит в пределах 0,2—0,4, так что реле напряжения защищают фактически от потери напряжения. Реле имеют контактную систе­му с замыкающим и размыкающим контактами. Реле выпускаются с самовозвратом и без самовозврата с руч­ным приводом защелки.

Защелка не уравновешена: левая часть тяжелее, чем правая. При притяжении якоря под действием сил тяжести защелка 1 по­ворачивается против часовой стрелки и запирает якорь 2 в притя­нутом положении. Для возврата якоря необходимо нажать на риф­леную головку защелки.

 

Герконовое реле.

 

Наименее надёжным узлом электромагнитных реле является контактная система. Электрическая дуга или искра, образующаяся при размыкании и замыкании контактов, приводит к их быстрому разрушению. Этому также способ­ствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным недостатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизирован­ном объеме с инертным газом не приводят к положительным результатам из-за больших технологических конструктивных трудностей, а также из-за того, что контакты при этом не защищаются от воздействия продуктов износа и старения изоляционных материалов. Другим не­достатком электромагнитных реле является их инерцион­ность, обусловленная значительной массой подвижных де­талей. Для получения необходимого быстродействия при­ходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.

Перечисленные недостатки электромагнитных реле привели к созданию реле с герметичными контактами (герконами).

Простейшее герконовое реле с замыкающим контактом изображено на рис.8, а.

 

Рис.8

 

Контактные сердечники (КС) I и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и вварива­ются в стеклянный герметичный баллон 3. Баллон запол­нен инертным газом — чистым азотом или азотом с не­большой (около 3 %) добавкой водорода. Давление газа внутри баллона составляет (0,4—0,6) • 105 Па. Инертная среда предотвращает окисление КС. Баллон устанавлива­ется в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор d между ними и замыкается по воздуху вокруг обмотки 4. Упрощенная картина магнитно­го поля показана на рис.9.

 

Рис. 9

 

Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу РЭ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхно­сти касания покрываются тонким слоем (2—50 мкм) золо­та, родия, палладия, рения, серебра и др.

При отключении обмотки магнитный поток и электро­магнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле).

В связи с тем, что контакты в герконе управляются маг­нитным полем, герконы называют магнитоуправляемыми контактами.

На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В гер­коне с переключающим контактом (рис.10, а) неподвиж­ные КС 1, 3 и подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается к КС 1 и размыкается с КС 3. Один из КС переключающего геркона (например 2) может быть выполнен из не магнитного материала (рис.10, б). Герконовое реле (рис.10, в) имеет два подвижных КС 1,2, два неподвижных КС 5,6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС 1 и 2. При встречном включении обмоток КС 1 замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Гер­коновое реле (рис.10, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС 1 и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном вклю­чении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6. Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабаты­ванию.

 

Рис.10

 

Одним из способов устранения влияния вибраций является использование жидкометаллических контактов. В переключаю­щем герконе (рис.11, а) внутри подвижного КС 1 име­ется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5.

Ртуть смачивает поверх­ности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС 1 вибрация не приводит к разрыву цепи.

 

 

 

 

Рис.11

 

В кон­струкции на рис.11,б между КС 2, КС 3 и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнит­ная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно уве­личить коммутируемый ток. На­личие ртути удлиняет процесс разрыва контактов, что уве­личивает время отключения реле.

Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через контактные сердечники КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.

Конструкция герконового реле, показанная на рис. 12, а, имеет разомкнутую магнитную цепь. По этой при­чине большая доля МДС катушки расходуется на прове­дение магнитного потока по воздуху. Кроме того, такая конструкция подвержена воздействию внешних магнитных полей, создаваемых расположенными рядом электротехни­ческими устройствами. Конструкция (рис.12, а)может и сама явиться источником электромагнитных помех для этих устройств. Для устранения этого недостатка магнит­ная система герконового реле заключается в кожух (эк­ран) из магнитомягкого материала (рис.12, б, в). При этом увеличивается магнитная проводимость и снижа­ется МДС срабатывания. С целью увеличения эффектив­ности экрана паразитный зазор е (рис.12,6) стараются уменьшить либо увеличить его площадь (рис.12, в). Ре­гулирование значений МДС срабатывания и отпускания в условиях серийного производства может производиться за счет либо изменения зазора е (рис.12,6), либо изме­нения положения магнитного шунта (рис.12, г), либо i осевого смещения геркона в обмотке. Герконы могут быть установлены как внутри (рис.13, а), так и снаружи управляющей обмотки (рис.13,6).

 

 

Рис.12. Конструктивные выполнения герконовых реле.

 

 

 

Рис.13. Многоцепевые герконовые реле.

 

Условия работы герконов в многоцепевых герконовых реле характеризуются следующими особенностями:

1) герконы одного типа и из одной партии могут иметь технологический разброс по МДС срабатывания и МДС отпускания.

2) из-за неравномерности магнитного поля первым срабатывает геркон, находящийся в области с большей напряженностью поля.

3) срабатывание одного геркона приводит к магнитному шунтированию других, в результате МДС срабатывания второго геркона после срабатывания первого увеличивается.

В этом отно­шении конструкция с внешним расположением герконов (рис.13,б) предпочтительнее, чем с внутренним, так как обеспечивает меньшее взаимное влияние соседних герконов. Число герконов в одном реле может достигать 12 и более. По перечисленным причинам разные контакты многоцепевых герконовых реле замыкаются и размыкаются неодновременно, что является их недостатком по сравне­нию с электромагнитными реле обычного типа.

Герконовые реле разнообразны по конструкции и на­значению. На рис.14 показан принцип действия герконового реле тока.

 

 

Рис. 14.

В реле контроля большого тока ис­пользуется компоновка, по­казанная на рис.14. Кон­тролируемый ток I проходит по шине 1. Магнитное поле этого тока замыкается вокруг шины и по КС геркона 2. Ток срабатывания геркона может регулироваться за счет изменения угла и рас­стояния х между шиной и герконом.

Наименьший ток срабатывания имеет место при = 90°. При =0 геркон не срабатывает при любом значении тока, так как магнит­ный поток в направлении продольной оси КС равен нулю.

Если кроме основного поля управления (МДС Fy) соз­дать дополнительное поляризующее магнитное поле за счет специальной обмотки (МДС Fn) или постоянного маг­нита, то герконовое реле становится поляризованным. Если , то под действием МДС Fnкон­такты геркона замкнутся. Для размыкания контактов МДС обмотки управления Fyдолжна быть меньше Fnи иметь об­ратный знак. Если продолжать увеличивать Fy, то при оп­ределенном ее значении произойдет повторное замыкание контактов геркона. В общем случае можно написать

где МДС поляризации Fnможет быть положительной (совпадать по знаку с Fy) или отрицательной. В послед­нем случае

Для отпускания геркона имеем

 

Похожие статьи:

poznayka.org

Электромагнитные реле тока и напряжения для защиты энергосистем, управления и защиты электропривода

 

а) Реле защиты энергосистем. В схемах защиты энергосистем и крупных силовых установок (мощных электродвигателей, трансформторов) широко применяются реле серии РТ-40. Реле выпускаются на токи от 0,2 до 200 А. Время срабатывания составляет 0,03 с при I = 3Iср. Коэффициент возврата Кв 0,7. Потребляемая мощность от 0,2 до 8 В А. Мощность коммутируемой цепи 50 Вт постоянного тока при напряжении 220 В.

На базе реле серии РТ-40 выпускаются реле максимального напряжения РН-51, РН-53 и минимальные реле напряжения РН-54.

б) Реле тока и напряжения для управления и защиты электропривода. В качестве таких реле часто применяются реле постоянного тока серии РЭВ-300 благодаря большому к.и малому ходу якоря.

в) Реле защиты электропривода. Основными требованиями, предъявляемыми к реле защиты электропривода, являются высокое быстродействие (tср. 0,05с),широкая регулировка тока срабатывания, вибро и ударостойкость.

Для работы в электроприводах переменного тока предназначены реле серии РЭВ. Эти реле используются для защиты от токов КЗ, а, в совокупности с реле времени – для защиты от токовых перегрузок.

Катушки токовых реле выполняются на Iном от 2,5 до 600 А. Регулирование уставки по току срабатывания производится изменением натяжения возвратной пружины и находится в пределах 110-700% Iном. Реле напряжения допускают регулировку уставки по напряжению срабатывания 70 – 85% Uном. . Кв токовых реле Кв = 0,2 – 0,4.

Время срабатывания реле серии РЭВ 0,06с, время отпускания 0.07с.

 

Похожие статьи:

poznayka.org

2. Исполнение реле тока и напряжения. Реле максимального и минимального действия

Включение обмоток токовых реле последовательно в фазы сети (или во вторичные токовые цепи) не может повлиять на значение тока сети, поскольку сопротивление обмоток реле мало по сравнению с общим сопротивлением тех цепей, в которые они включены.

Термическая стойкость обмоток рассчитана на длительное прохождение токов нагрузки и на кратковременное прохождение тока короткого замыкания (в заводских параметрах дается односекундный ток, допустимый по термической стойкости).

Принципиальное отличие реле напряжения от токовых реле заключается в выполнении обмоток, которые у реле напряжения включаются не последовательно в цепь, а на междуфазное или фазное напряжение сети (параллельное включение). Сопротивление обмотки должно быть значительно больше общего сопротивления сети, в которую реле включается. Обмотки реле напряжения имеют большое число витков из провода значительно меньшего диаметра по сравнению с обмотками токовых реле.

Ток в обмотке реле зависит от напряжения Uр и сопротивления обмотки Zp:

Ip = Up / Zp,

где Zp – полное сопротивление обмотки реле, состоящее из индуктивной Хр и активной Rp частей.

При подведении переменного напряжения в сопротивлении катушки Zр с большим числом витков преобладает индуктивное сопротивление

Xр= ω L,

где ω = 2πf – угловая частота переменного тока сети; L – индуктивность катушки.

Если бы у реле напряжения цепь обмотки состояла только из многовитковых катушек, насаженных на полюса сердечника, то его поведение в условиях срабатывания характеризовалось бы следующими явлениями. В момент срабатывания из-за уменьшения воздушного зазора и соответствующего уменьшения магнитного сопротивления реле увеличивалось бы индуктивное сопротивление обмотки Хр. Это приводило бы к снижению тока Iр при неизменном напряжении Uр и, как следствие, к уменьшению Мэл.

В результате при втягивании якоря не получалось бы достаточного для надежного замыкания контактов избыточного момента, вследствие чего в условиях срабатывания и возврата подвижная система реле начала бы «плавать». Поэтому для получения необходимого избыточного момента в реле напряжения последовательно с обмоткой включается добавочное активное сопротивление Rд величина которого в несколько раз больше сопротивления обмотки. При этом изменение индуктивного сопротивления Хр уже не оказывает заметного влияния на Iр в момент срабатывания или возврата реле. Кроме обеспечения нарастания Мэл при ходе якоря Rд исключает влияние на уставку реле изменений температуры обмотки и частоты ω.

Применительно к реле напряжения можно записать:

Mэл=k5I²p,

где k5 – коэффициент пропорциональности.

Но так как Zр при наличии Rд мало изменяется при движении якоря, то электромагнитный момент зависит только от подведенного к зажимам реле напряжения Uр. При снижении Up уменьшается Iр, и наоборот, так что изменение Мэл у реле напряжения аналогично изменению Мэл у токовых реле (см. рис. 3).

Конструктивно Рд выполняется в виде отдельного резистора, установленного внутри реле.

Рассмотренные реле действуют при возрастании тока в их обмотке и поэтому называются максимальными реле.

В практике используются также минимальные реле, действующие при уменьшении тока в обмотке. В нормальных условиях якорь минимального реле находится в притянутом положении. Условием срабатывания минимальных реле принято считать отпадание якоря при уменьшении тока в обмотке.

Поэтому током срабатывания минимального реле Iс.р называют наибольший ток, при котором якорь возвращается в положение, соответствующее обесточенным обмоткам реле, а током возврата Iв – наименьший ток, при котором якорь реле притягивается к полюсам.

Как и у максимальных реле, коэффициент возврата минимальных реле равен отношению Iв / Ic.p. У максимальных реле Iв меньше Iс.р, поэтому kв меньше единицы, у минимальных реле Iв больше Iс.р, поэтому kв больше единицы.

studfiles.net

Реле напряжения. Виды и работа. Применение и устройство

Чтобы защитить от поломок бытовую технику от скачков и перепадов напряжения, применяют прибор, который называется реле напряжения (РН). Это устройство поддерживает напряжение электрической сети в номинальном режиме. Прибор имеет свои особенности и способ подключения.

Как устроено реле напряжения и принцип его действия

Принципиальная схема действия РН заключается в недопущении возникновения излишнего или недостаточного сетевого напряжения питания. Чтобы понять причину необходимости установки РН, назовем некоторые способствующие причины:

· При обрыве проводов линии питания частных домов, возможен перепад напряжения сети на 160 вольт выше нормы, что обуславливает выход из строя незащищенных электроприборов, которые быстро сгорают и становятся неисправными.· В ненастную погоду, либо по другим обстоятельствам отключение провода нейтрали приводит к увеличению нагрузки и неисправностям бытовой и другой техники.· При большой протяженности линии сети питания от трансформатора, напряжение уменьшается до значения, ниже критического, что негативно отражается на электрических устройствах, подключенных к этой линии.· При запуске мощного электроустройства происходит перегрузка фазы, напряжение падает, возможны проблемы с приборами, подключенными к сети.

Реле напряжения включает в себя микросхему, которая следит за величиной напряжения в сети. Если напряжение повышается или снижается, то от микросхемы поступает сигнал на электромагнитное реле, которое быстро включает аппарат, выравнивающий напряжение.

Рабочий интервал РН 100-400 В. Во время грозовой погоды разряд молнии создает превышение этих пределов, поэтому нельзя включать электрические устройства во время грозы с молнией, реле напряжения не справится с этой задачей. Для этого существуют приборы, ограничивающие напряжение.

РН состоит из силовой и электронной частей. Электронная часть занимается контролем напряжения, силовая часть распределяет нагрузки. Главной частью РН является микропроцессор. РН с микропроцессором превосходит по своим параметрам другие типы реле, так как производит плавную регулировку напряжения.

Основным параметром РН служит его быстродействие. Предел срабатывания настраивается потенциометром. Принцип действия этого прибора отличается от работы стабилизатора. При перепадах напряжения сети реле производит отключения участков, не достигших нормы напряжения, а стабилизаторы работают по всей сети равномерно. При возникшей аварии с задачей лучше справится РН, оно произведет отключение участков, на которых произошла авария.

Где применяются РН и их достоинства

Чтобы предотвратить перегрузки электрических приборов во время скачков напряжения в сети питания, применяют РН. Такими приборами могут быть котел отопления, бойлер, холодильник и другие приборы.

Широкая область использования РН обуславливается множеством приборов во всех областях жизни человека, во многих учреждениях и организациях.

Места применения реле напряжения

· Защита сетей с 1-й и 3-мя фазами.· Защита фаз сети от перекоса, слипания, обрыва.· Блокировка неправильного порядка действия фаз.· Защита электрооборудования от неисправностей.· Применение в эксплуатации приборов с длительным периодом перехода.· В устройствах с нагруженным электромотором.· В спецустановках с требованием качества сети питания (полные фазы, качественное напряжение).· Для защиты бытовой техники и приборов от перепадов напряжения в квартирах и жилых домах.· В общественных организациях, кинотеатрах, компьютерных залах, супермаркетах, школах, больницах, чтобы защитить дорогостоящие электроприборы от неисправностей.· На заводах и фабриках, для бесперебойной и безаварийной работы по выполнению технологических процессов.

Преимущества применения

· Применение при любых температурных условиях, внутри и снаружи помещений (интервал температур -20 +40 градусов).· Множество модификаций реле обуславливает выбор прибора по финансовым возможностям и функциям устройства.· Реле защищает дорогостоящее оборудование от излишнего и недостающего напряжения, от возникновения неисправностей.· Большой ассортимент моделей и изготовителей реле дает возможность покупателю выбрать прибор по индивидуальным запросам.· Установка прибора не требует высокой квалификации, вызов электромонтера не потребуется.· Приборы имеют оригинальный внешний вид, при установке в помещении легко впишутся в интерьер.· При работе реле во время возникновения перепадов в сети питания освещение работает нормально, без видимых изменений светового потока.· Реле исключает из схемы сети участки, которые повредились во время аварии или грозы.

Виды

По типу подключения реле делятся:

·  В форме корпуса с вилкой и розеткой. ·  По типу удлинителя. ·  С монтажом на рейку DIN.

Первый тип реле выполнен с вилкой, которая втыкается в обычную розетку, не вызывает никаких трудностей. Этот прибор защищает несколько потребителей, питающихся от него. Управляющим элементом служит микроконтроллер, анализирующий напряжение питания. Текущее напряжение выдается на цифровой экран. Силовым элементом отключения и регулирования служит электромагнитное реле. На корпусе есть кнопки, которые дают возможность регулировать интервал напряжения и отключать питание.

Реле контроля напряжения в виде удлинителя подобно первому типу. Отличие заключается в том, что в удлинителе есть несколько розеток, под защитой оказывается несколько включенных устройств.

Третий тип реле устанавливается в распределительный шкаф на DIN рейку. Это более функциональное устройство, позволяющее защитить от перепадов напряжения квартиру или дом. В приборе имеется несколько дополнительных настроек и опций, несколько режимов эксплуатации.

По типу нагрузки реле делятся:

·  1-фазное. ·  3-фазное.

Для защиты трехфазных электромоторов и установок применяют приборы первого типа. Они защищают компрессоры, холодильники, кондиционеры и другие устройства с приводом от электромотора.

В помещениях, имеющих подводку сети питания на трех фазах, применяются также 3-фазные реле. Если отключится одна фаза, то остальные две отключатся с помощью реле. При небольших перекосах фаз, перепадах, скачках напряжения реле сразу сработает. Если на одной фазе будет 220 В, а на другой 210, то все фазы мгновенно обесточатся, хотя это не является причиной для отключения, такое напряжение не выведет из строя электроприборы.

Если в помещении имеются три фазы питания входа, то целесообразно будет монтировать отдельные реле защиты на каждую фазу. Во время выбора реле 1-фазного типа необходимо обращать внимание на то, что на корпусе прибора указана пропускная мощность, при которой цепь не размыкается. Поэтому, при выборе следует делать поправку на несколько ампер выше мощности сети питания.

Как выбрать тип РН
  1. Для приобретения реле лучше обратиться в магазин, специализирующийся на реализации приборов такого типа, в магазине вас проконсультируют о безопасной эксплуатации прибора, оформят гарантию.
  2. Стоимость реле зависит от факторов:· Тип прибора, реечный тип стоит дороже, с удлинителем – средняя цена, в виде розетки – самый дешевый.· Изготовитель, импортные реле стоят дороже, отечественные более доступны в цене.· Вспомогательные опции, наличие авторегулировок, ручных настроек.· Внешнее оформление, наличие разных цветов, красивый вид предполагают выше стоимость прибора.
  3. Если решили приобретать 1-фазное реле, определите мощность прибора. Реле бытовые имеют силовые контакты на 100 А. Желательно повысить мощность реле на 25%, и с учетом этого результата выбрать покупку.
  4. 3-фазные реле выбрать проще, так как они изготавливаются на одну силу тока в 16 А.
  5. Перед приобретением прочитайте инструкцию, проверьте талон на гарантию, проверьте на соответствие характеристики устройства, материал корпуса, эксплуатационные температуры.
  6. Перед монтажом сначала установить автоматический выключатель для аварийного отключения сети, если оно не соответствует норме.
  7. Предпочтительно наличие на корпусе реле дисплея, показывающего параметры.
  8. Если купили розеточные типы реле, то подключите к нему дорогостоящие двигатели.
  9. Необходимо обратить внимание на негорючесть корпуса реле, лучше, если материалом его будет поликарбонат.
  10. Опция контроля времени сработки реле желательна в составе.
  11. Блокировка от перегрева, определение мощности сети питания дает возможность реле выполнять свои функции качественнее.
Как установить и подключить РН

Перед установкой реле следует определить, если необходимость в монтаже такого устройства. Если ваша сеть питания имеет напряжение 150-180 В, то электроприборы не смогут проработать весь срок службы, определенный изготовителем. В вашем случае реле не окажет помощи, потому что будет отключать снабжение питанием, электроприборы будут постоянно отключаться. Для этой ситуации лучше поставить стабилизатор.

Если в электрической сети частые перепады и скачки напряжения, пропадания фаз, то реле напряжения необходимо.

Для монтажа реле необходимо иметь:

· Реле.· Кусок провода сечением 0,5 мм2.· Рейка для монтажа автоматического выключателя.· Саморезы.· Плоскогубцы с изолированными ручками.· Индикатор напряжения.· Отвертка.

Перед началом установки обесточьте сеть питания, отключите автоматы входа напряжения. Возле автоматов закрепите на стене DIN рейку с помощью саморезов и отвертки. Реле легко защелкивается на рейке с помощью специального механизма, расположенного сзади.

На автомате входа индикатором найдите фазу. Разрежьте входной провод в месте входа. Один конец подключается к контакту входа, второй к контакту выхода. Возьмите провод, соедините его с нулем автомата, второй конец подсоедините к РН на клемму нуля.

Включите сеть питания, проконтролируйте работу реле. Самая простая схема – розеточного типа. Такое устройство втыкается в розетку, вилка электроприбора втыкается в розеточное гнездо реле.

Вводной автомат – обязательный элемент защиты реле напряжения, ставится рядом с реле напряжения. Значение номинала автомата выбирается на одну ступень ниже номинала реле.

Если ток вашего реле выше 65 А, то лучше применить устройство вспомогательного пуска, во избежание частых сработок реле.

Похожие темы:

 

electrosam.ru

Электромагнитные реле тока и напряжения

Согласование тяговых и противодействующих харак­теристик. Электро-магнитные реле благодаря простоте кон­струкции и надежности широко распространены в схемах электропривода и в схемах защиты энергосистем. Электромагнитные ре­ле приводятся в действие с помощью электромагнитов постоянного или переменного тока.

Рассмотрим работу максималь­ного реле постоянного тока с про­стейшей магнитной системой кла­панного типа.

На рис. 6.3 изображены тяговая и противодействующая характери­стики реле.

Противодействующие усилия создаются возвратной и контактными пружинами.

Усилие контактных пружин со­здает предварительное нажатие в мо­мент соприкосновения контактов. В результате уменьшается вибрация контактов при срабатывании и обеспечивается необходимое контактное нажатие.

Подпись: Рис. 6.3. Согласование характеристик электромагнитного реле С учетом линейной зависимости силы пружины от ее деформации и относительно небольшого перемещения яко­ря противодействующее усилие пружин, приведенное к яко­рю, меняется линейно с изменением     зазора. Для срабаты­вания реле необходимо, чтобы тяговая характеристика во всех точках хода якоря шла выше суммарной  противо­действующей характеристики .  Для токового реле при данном начальном зазоре положение зависит от тока. При ненасыщенной магнитной системе тяговая сила пропорциональна квадрату тока.

Наименьшее значение тока, при котором кривая на­чинает проходить выше зависимости, определяет ток трогания  реле. Срабатывание реле определяется точ­кой б (зазор), при которой идет выше. Для надежного включения в обмотку реле обычно подается ток <. Коэффициент запаса при этом  и обыч­но составляет.

С ростом тяговая характеристика поднимается, уве­личивается тяговое электромагнитное усилие, действующее на якорь, увеличивается ускорение якоря, сокращается пол­ное время включения. Однако при этом возрастают удары в механизме и вибрация контактов.

Для того чтобы устранить залипание якоря, в магнит­ной системе всегда создается конечный зазор. При этом зазоре тяговое усилие значительно превышает противодей­ствующее усилие ().

Для отключения реле тяговая характеристика во всех точках должна быть ниже характеристики.

При этом усилие, развиваемое противодействующими пружина­ми, больше электромагнитного усилия и якорь возвратится в начальное положение. Ток при таком положении харак­теристики называется током отпускания, или током воз­врата

При отпускании реле определяющей точкой является точка б, в которой характеристика идет ниже характеристики .

Для реле защиты энергосистем и электропривода, конт­ролирующих значение тока в узких пределах, коэффициент возврата должен быть возможно ближе к еди­нице. Тяговая характеристика электромагнитов переменного тока более полога, чем электромагнитов постоянного тока, и ее легче согласовать с противодействующей. Поэтому высокий коэффициент возврата в реле переменного тока достигается легче, чем в реле постоянного тока.

electrono.ru

Конструкция измерительных реле тока и напряжения

Количество просмотров публикации Конструкция измерительных реле тока и напряжения - 168

Релœе, классификация, характеристики

ЭЛЕКТРОМЕХАНИЧЕСКИЕ АППАРАТЫ АВТОМАТИКИ

Электромеханические аппараты автоматики

ЛЕКЦИЯ №13

2.1 Релœе классификация, характеристики.

2.2 Конструкция измерительных релœе тока и напряжения.

2.3 Поляризованные электромагнитные релœе.

2.4 Релœе электротепловые: назначение, применение, выбор.

Определœение

Релœе это такой электрический аппарат, в котором, при плавном изменении управляющего (входного) параметра и достижении этим параметром определённой наперёд заданной величины, происходит ступенчатое (скачкообразное) изменение управляемого (выходного) параметра. Один из этих параметров электрический. Входными параметрами бывают: физическая величина (ток, напряжение, давление и др), разность значений, изменение знака или скорости и др.

Входной параметр может изменяться и ступенчато.

Классификация

По области применения релœе для: схем автоматики, защиты элементов энергосистем и электроприводов, радиоэлектроники, летательных аппаратов, морских и речных судов, желœезнодорожного транспорта и др. Размещено на реф.рфУ релœе, к примеру, летательных аппаратов имеется по две или три дублирующих обмотки.

По физической природе управляющего сигнала релœе: электрические – тока, напряжения, мощности, частоты, электротепловые, механические – давления, оптические и др.

Учитывая зависимость отвыполняемых функций релœе: измерительные и логические. Приведённое определœение больше относится к измерительным релœе.

По принципу действия релœе: электрические – электромагнитные, индукционные, поляризованные, магнитоэлектрические, электротепловые, дифференциальные.

По принципу воздействия на управляемую цепь релœе: контактные (электромеханические) и бесконтактные (статические).

По роду тока релœе: постоянного тока и переменного тока управляющего сигнала.

По способу включения релœе: первичные и вторичные.

Характеристики

Характеристика управления релœе - ϶ᴛᴏ графическое изображение зависимости выходного параметра от входного. Рассмотрим характеристику электромагнитного релœе, у которого входным параметром является напряжение на катушке UВХ, а выходным параметром UВЫХ является напряжение на сопротивлении RН, ĸᴏᴛᴏᴩᴏᴇ будет при замыкании контактов релœе (рис. 44).

При плавном увеличении UВХ и достижении напряжения срабатывания UСР, релœе срабатывает (якорь притягивается к сердечнику и замыкаются контакты) и на выходе ступенчато (скачком) появляется максимальное напряжение равное напряжению сети UВЫХ = UС. В случае если после срабатывания уменьшить UВХ, то при достижении UОТП релœе возвращается ступенчато (отключается) в исходное состояние, когда UВЫХ = 0 – отпускание релœе.

Для других типов релœе бывают другие характеристики, к примеру, двухпозиционное поляризованное релœе имеет характеристику, которая располагается в четырёх квадрантах в виде симметричной

петли.

Коэффициент возврата релœе является важным параметром характеризующим релœе

(74)

Для релœе защиты энергосистем, электроприводов, схем автоматики, контролирующих значения тока или напряжения коэффициент возврата должен быть близким к единице.

На величину коэффициента возврата влияют различные факторы: величина рабочего зазора, силы трения, свойства возвратной и контактной пружин, эффект прилипания, остаточное намагничивание, масса якоря и др.

Релœе минимального напряжения серии типа РН – 51

Релœе минимального напряжения предназначено для измерения и контроля напряжения в электрической сети. При понижении напряжения до заданного значения релœе отключает свои контакты и тем самым подает сигнал обслуживающему персоналу. Конструктивная схема релœе минимального напряжения приведена на рис. 45.

Две одинаковые катушки 2, намотанные тонким обмоточным проводом расположены на сердечнике 1. Катушки соединœены между собой последовательно и подключаются к сети переменного тока через выпрямительный мост 9 и либо через два резистора R1, R2, либо через один резистор R1.

Под действием электромагнитного поля в сердечнике созданного постоянным током, протекающим по катушкам якорь 3 устанавливается в вертикальное положение, при напряжении в сети выше заданного (установленного),

 
 

его ось в подшипниках 6 поворачивается по часовой стрелке, затягивая спиральную пружину 7.В результате размыкаются электрические контакты 10 и замыкаются контакты 5 с помощью металлической пластины 4.

При понижении напряжения в сети ниже заданной величины уменьшается электромагнитное поле и сила притяжения якоря к сердечнику.

Под воздействием энергии сжатой спиральной пружины 7 якорь 3 наклоняется против хода часовой стрелки, электрические контакты 5 размыкаются, а контакты 10 замыкаются.

Замыкание и размыкание контактов 5 и 10 используется в схемах релœейной защиты, к примеру для подключения резервного источника питания или переключения отпаек силового трансформатора предприятия.

Поворотом стрелки – указателя 8 можно изменять натяжение спиральной пружины 7 и тем самым изменять настройку релœе на другое заданное напряжение. На шкале нанесены значения напряжения ʼʼуставкиʼʼ релœе UУ.

При понижении напряжения и размыкании контактов 5 регистрируется напряжение ʼʼсрабатыванияʼʼ UСР - ϶ᴛᴏ наибольшее значение при котором релœе отключает контакты 5. При восстановлении напряжения в сети релœе должно замкнуть контакты 5 и разомкнуть контакты 10. Наименьшее напряжение, при котором контакты 5 замыкаются принято считать напряжением ʼʼвозвратаʼʼ релœе UВЗ. В случае если релœе подключено через оба резистора R1 и R2, то величина напряжения ʼʼсрабатыванияʼʼ и ʼʼвозвратаʼʼ примерно в два раза больше по сравнению с тем, когда релœе подключено только через резистор R1. Этим дополнительно можно изменять пределы контролируемого напряжения исходя из напряжения в сети.

Релœе минимального напряжения изготавливается с легким поворотным якорем, сердечник из магнитомягкой электротехнической стали, воздушный зазор при срабатывании релœе изменяется незначительно, релœе имеет качественную спиральную пружину, отсутствует прилипание. Благодаря этому коэффициент возврата близок к единице.

Релœе максимального тока серии РТ – 80

Оно представляет собой устройство, в котором объединœены два токовых релœе, которые могли бы работать независимо. При этом совместная работа индукционной и электромагнитной систем позволяет получить наилучшие защитные характеристики. Индукционная система позволяет получить зависимую от тока время–токовую характеристику: чем больше сила тока, тем меньше время срабатывания. Электромагнитная система позволяет получить мгновенное срабатывание (отсечку).

Конструктивная схема релœе максимального тока показана на рис. 46. Общими для обеих систем являются: токовая обмотка релœе 5 с отпайками, выведенными на контактную колодку 4 с двумя контактными винтами 3, электрические контакты релœе 16 и механический указатель срабатывания – блинкер (который на рис. 45 не показан). По обмотке 5 проходит ток потребителя или кратный ему.

Индукционная система состоит из следующих частей: электромагнита 7 с двумя короткозамкнутыми витками 8 на его полюсах сверху и снизу, охватывающими часть магнитопровода, подвижной рамки 9, которая может поворачиваться вокруг

своей оси 0 – 0 на небольшой угол, алюминиевого диска 11, укрепленного вместе с червяком на оси 0′ – 0′, вращающейся в подпятниках, расположенных в телœе рамки 9, зубчатого сектора 14, свободно лежащего на движке в форме площадки 10, перемещающегося вертикально по винту 17 вдоль шкалы устройства регулировки выдержки времени (на рис. 46 не показана), и пружины 15, удерживающей рамку в начальном положении.

Электромагнитная система состоит из стального якоря 2, имеющего на левом конце коромысло 13 для замыкания электрических контактов 16, стального стержня 6, который вместе с

якорем образует магнитопровод, и регулировочного винта 1, изменяющего величину воздушного зазора между якорем 2 и сердечником и тем самым величину тока срабатывания системы (кратность отсечки).

Работа индукционной системы. При протекании по обмотке релœе тока создается магнитный поток, который, замыкаясь по магнитопроводу 7 и зазору между полюсами, пронизывает находящийся в зазоре диск. В короткозамкнутых витках 8 возникает ЭДС, ток и свой магнитный поток, который стремится препятствовать изменению основного потока. В результате такого действия короткозамкнутых витков магнитный поток появляется вначале в той части зазора, где короткозамкнутых витков нет, а затем в части, охватываемой этими витками. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в зазоре создается движущееся (ʼʼбегущееʼʼ) магнитное поле, ĸᴏᴛᴏᴩᴏᴇ, взаимодействуя с вихревыми токами в диске, увлекает его за собой. Последний начинает вращаться в направлении движения бегущего магнитного поля при токе 20...30% от тока срабатывания и вращать укрепленный с ним на одной оси червяк. Но, так как рамка 9 оттянута пружиной 15 в крайнее положение, то сцепления червяка с зубчатым сектором 14 не происходит. Постоянный магнит 12 за счёт своего постоянного магнитного поля несколько подтормаживает диск. Сила торможения пропорциональна частоте вращения диска.

При определœенной величинœе тока в обмотке релœе суммарный момент, воздействующий на диск, превысит силу пружины 15, рамка, с диском повернется, и червяк войдет в зацепление с зубчатым сектором. Наименьший ток, при котором происходит зацепление червяка с зубчатым сектором, принято считать током ʼʼсрабатыванияʼʼ индукционной системы релœе.

С момента зацепления зубчатый сектор начинает подниматься и по истечении некоторого времени, упираясь своим рычагом в коромысло 13, поворачивает его вверх (вместе с ним поднимается и левый конец якоря 2 электромагнитной системы). При этом правый конец якоря опускается, зазор между якорем и сердечником уменьшается, вследствие чего правый конец якоря притягивается к сердечнику, а коромысло 13 замыкает (или размыкает) электрические контакты релœе 16.

Время t, через ĸᴏᴛᴏᴩᴏᴇ происходит замыкание контактов релœе, зависит от начального положения зубчатого сектора 14 (т. е. от места положения движка 10 по вертикали) и от частоты вращения диска 11 (ᴛ.ᴇ. от степени перегрузки по току).

Начальное положение зубчатого сектора 14 можно изменять перемещением движка 10 за счёт винта 17, таким путем изменяется уставка времени – tУ.

Работа электромагнитной системы. При большой кратности перегрузки по току якорь 2 может притянуться к сердечнику правым концом практически без выдержки времени ,замыкая контакты релœе 16. Ток отсечки регулируется винтом 1 изменяющим воздушный зазор электромагнита. Кроме того величина тока отсечки зависит от положения винта 3 изменяющего ток ʼʼуставкиʼʼ индукционной системы.

Времятоковая характеристика релœе (рис. 47) должна соответствовать времятоковой характеристике защищаемого объекта. Напротив отверстий контактной колодки 4 имеется ряд цифр (4…10), которые соответствуют значениям кратностей токов ʼʼуставкиʼʼ индукционного элемента .

Для каждого положения штифта (винта) 3 и соответствующих экспериментально определяются токи срабатывания и возврата индукционного элемента. После определœения требуемого значениярегулировкой винта 1 настраивается экспериментально ток срабатывания ( отсечки ) электромагнитного элемента .

Выдержка времени срабатывания индукционного элемента при заданном токе нагрузки настраивается изменением начального положения зубчатого сектора 14, где отмечено время (0,5…4 с). В случае если в сети ток превышает релœе срабатывает практически мгновенно. В случае если в сети ток превышает, а затем снизится до значения меньшего пока релœе не замкнуло свои контакты, то релœе будет находиться в исходном состоянии.

8.3 Статическое релœе тока РСТ–11

Релœе питается (рис. 48) напряжением 220 В, ĸᴏᴛᴏᴩᴏᴇ через резистор R21 поступает на выпрямительный мост V2. За счёт протекания тока по варисторам RV1 и RV2, падению напряжения на R21 величина напряжения на фильтрующем конденсаторе C8 снижается и составляет ≈60 В. С помощью резисторов R19, R20, стабилитронов VD4, VD5 и конденсаторов С5, С6 создаётся двухполярный источник питания для операционных усилителœей ± 15 В.

Входной измеряемый ток IВХ от трансформатора тока поступает на промежуточный трансформатор тока TA1, вторичная обмотка которого через выпрямительный мост V1 подключается на нагрузочное сопротивление R1. На этом сопротивлении будет двухполупериодное выпрямленное напряжение пропорциональное току, его величина устанавливается исходя из ожидаемой величины тока нагрузки контролируемой цепи.

Напряжение с R1 поступает на узел сравнения выполненый на времяимпульсном принципе. В состав узла сравнения входят: пороговое устройство DА1 (однопороговый компаратор) на ОУ с постоянным регулируемым опорным напряжением положительного знака на не инвертирующем входе усилителя. Регулирование величины опорного напряжения производится кнопками SB1 – SB5 ступенчато исходя из тока уставки срабатывания релœе.

Времясравнивающая цепочка, образуется резисторами R7, R8, диодом VD2, конденсатором С2 и двуханодным стабилитроном VD3. За счёт диода VD2 время заряда конденсатора С2 меньше, чем время разряда.

Второе пороговое устройство выполнено на операционном усилителœе DА2 по схеме триггера с положительной обратной связью поступающей на вход по резистору R16. Работа триггера определяется значением и знаком напряжения на инвертирующем входе, поступающем с конденсатора C2.

В случае если амплитуда тока и, следовательно, напряжение на R1 превысит величину порогового напряжения с делителя R4, R5 и R8 – R13, то на выходе DА1 появятся разнополярные прямоугольные импульсы. В случае если соотношение длительностей положительных и отрицательных импульсов достигает значения, при котором конденсатор С2 зарядится до величины порога срабатывания триггера DA2, то открывается транзистор VT1 и срабатывает релœе K1, подавая своими контактами команду на сигнал или отключение выключателя.

Замечание. Кроме релœе, приведённых в данном параграфе, в настоящее время выпускаются промышленностью статические релœе тока и напряжения на базе микроэлектронной техники, которые являются альтернативной заменой электромеханических релœе. Технические данные статических и электромеханических релœе тока и напряжения приведены в приложении П4.

Особого внимания заслуживают статические релœе тока типов РС40М и РС80М, не требующие дополнительных источников питания. Там же приводятся данные релœе максимального и минимального постоянного тока и релœе максимального и минимального напряжения переменного и постоянного токов.

referatwork.ru