УЗИП Legrand класс 1+2 1П Imax 60кА . Использовать с автоматическим выключателем Тип C — 40 А. УЗИП класс 1+2 рекомендуются для защиты индивидуальных жилых домов оборудованных системой молниезащиты, или с установленными внешними теле-радио антеннами, или с воздушным вводом линии электропередач. Основные характеристики:УЗИП класс 1+2Imax: ≤ 60 кА; Iimp: 8 кАUc=320 B; Up=1,5 кB при In= 15 кAКоличество полюсов: 1ПДополнительное устройство защиты: Тип C — 40 AКоличество модулей: 1. Предлагая новые УЗИП стандартного исполнения и УЗИП, стыкуемые с автоматическими выключателями или имеющие встроенные функции токовой защиты, компания Legrand обеспечивает безопасность электроустановок любого типа при любых уровнях опасности. Все УЗИП компании Legrand SPD соответствуют стандартам EN и МЭК 6164311,которые разделяют два типа УЗИП для распределительных щитов, T1 и T2. УЗИП типа T1 обеспечивают защиту главных распределительных щитов (грщ), а УЗИП типа T2 обычно защищают щиты промежуточного распределения или щитки конечного распределения. УЗИП T1+T2, которые всё чаще используются на вводах электроустановок, соответствуют спецификациям обоих типов. Специальная легко различимая маркировка облегчает обращение с УЗИП, а их дизайн полностью соответствует дизайну модульного электрораспределительного оборудования Legrand. Индикатор сменного модуля показывает, что УЗИП находится в рабочем состоянии (зеленая полоска) или что сменный модуль нуждается в замене (оранжевая полоска). Кроме того, на обычных и стыкуемых с автоматическими выключателями УЗИП имеется вспомогательный контакт сигнализации срабатывания для дистанционного контроля. На стыкуемых с автоматическими выключателями УЗИП этот контакт сигнализирует о положении выключателя (Вкл/откл). Дизайн новых УЗИП Legrand такой же, как у автоматических выключателей серии DX³. Четкая маркировка позволяет легко идентифицировать изделие при установке в распределительном щите.Устройство защиты от импульсных перенапряжений (УЗИП). Узип 1 2 класса
УЗИП Legrand класс 1+2 1П 60кА ⋆ Электротовары
Описание
УЗИП Legrand
Индикатор состояния и удаленный мониторинг.
Дизайн и маркировка
Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже.
Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:
Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.
Вентильные и искровые разрядники. Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.
Ограничители перенапряжения (ОПН). Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, принцип работы ОПН построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.
Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.
Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:
Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо сделать заземление в доме, иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно подключить УЗИП класса III.
При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.
Напоследок рекомендуем просмотреть полезное видео, в котором подробно рассмотрена классификация устройств защиты от перенапряжений, принцип действия и советы по выбору подходящего аппарата:
Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!
Будет интересно прочитать:
samelectrik.ru
Внешняя молниезащита (External Lightning Protection) предназначена для защиты здания от пожара и разрушения при прямом попадании молнии.
Внутренняя молниезащита предназначена для защиты людей и электрооборудования внутри зданий от электромагнитного влияния близлежащего удара молнии (косвенного воздействия), которое передаётся по входящим в здание электрическим сетям, информационным кабелям и трубопроводам.
В информационных сетях УЗИП выбираются как по принципу зонирования, так и по применениям:
Искровые разрядники используются для выравнивания потенциалов (Equipotential Bonding) тех элементов конструкции, которые по условиям эксплуатации не могут быть соединены друг с другом.
Примеры:
При возникновении большой разности потенциалов между этими элементами искровый разрядник срабатывает и на короткое время соединяет эти элементы конструкции («если очень нужно, то можно»).
Используются для координации работы УЗИП разных классов:
так, чтобы сначала срабатывали УЗИП класса I, потом – УЗИП класса II и, наконец, - УЗИП класса III.
Тип ввода:
Место установки:
Подключение УЗИП:
Число вводов:
Cпособ защиты:
Количество фаз:
Система заземления:
Класс УЗИП:
Характеристики:
Опции:
ГОСТ Р МЭК 61643-12-2011. Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения.
УЗО
Источники бесперебойного питания
www.maxplant.ru
Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.
Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.
Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).
В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.
По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.
По типу нелинейного элемента делятся на:
● УЗИП коммутирующего типа;
● УЗИП ограничивающего типа;
● УЗИП комбинированного типа.
УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.
УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.
УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.
Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.
УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.
Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.
По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.
Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.
Существуют различные причины, по которым появляются перепады напряжения. Среди них такие, как грозы, появление перехлестов провода, работы сварочного характера, помехи в сети электропитания и различные ситуации аварийного характера.
С целью защиты электрической проводки дома и работающих в нем приборов-потребителей созданы специализированные устройства. Именно эти устройства и имеют название «устройства защиты от импульсных перенапряжений» (сокращенно УЗИП).
Наиболее надежным образом домовая сеть защищается при помощи использования сразу нескольких уровней защитной системы, собранной из устройств разных классов.
В большинстве случаев такая защита состоит из трех ступеней. Существует специальный ГОСТ (Р 51992-2002 (МЭК 61643-1-98)), который и регламентирует деление таких устройств на три класса.
Класс I (В). Устройства, принадлежащие к этому классу, защищают от прямых попаданий разряда молнии в молниезащитную систему строения, либо воздушные электросети. Монтаж этих устройств выполняют прямо в ВРУ, либо ГРЩ там, где кабель входит в здание. Эти устройства рассчитаны на разрядный ток порядка 30-60 килоАмпер.
Второй класс (С). Эти приборы предназначены для защиты сетей токораспределения объектов от появления помех коммутации. Они способны работать в качестве второй защитной ступени от попадания молнии. Их устанавливают в распредщите, а их ток разряда по номиналу 20-40 килоАмпер.
Класс III (D). Блоки, представляющие из себя защитные устройства этого класса, устанавливают прямо перед прибором-потребителем. По конструкции такие устройства могут быть самыми разными (розетка, вилка, отдельно монтируемый модуль, либо устройство навесного монтажа). Ток их разряда не превышает 5-10 кА.
Главным элементом построения таких устройств явился варистор или разрядник. Кроме того, в состав этих устройств входит устройство-индикатор, способное сообщить о том, что УЗИП вышел из строя.
Из отрицательных показателей этих «защитников» следует отметить тот, что они нагреваются при сработке, что стало причиной того, что им необходимо время для остывания, а это сильно уменьшает селективность работы устройства.
Монтируют такой прибор на ДИН-рейке. варистор же, вышедший из строя, легко меняется методом удаления последнего из корпуса.
Чтобы добиться защиты потребителя от ненужных воздействий в хорошем качестве, требуется обеспечение строений эффективными системами заземлений и уравниванием потенциалов. С этой целью используется заземляющая система типа TN-C либо TN-CS, имеющие разделение проводников нуля и защиты.
Затем монтируют устройства защиты, расстояние между которыми (от одного класса до другого) не должно быть менее 10 метров по питающему кабелю. Только при выполнении таких условий можно обеспечить правильную сработку защитных устройств.
На воздушных линиях, в щите ввода на столбах наилучшим образом срабатывают системы, основанные на разрядниках и плавких вставках.
Главные щиты зданий хорошо защищают УЗИП первого и второго класса, основанные на варисторах, а этажные щиты – снабжаются системами третьего класса. В качестве защиты дополнительного характера, розетки снабжаются системами в виде вставок и разных удлинителей.
Наконец, хочу заметить, что устройства подобного типа значительным образом уменьшают процент выхода из строя потребителей и поражения человека высоким напряжением, хотя и не способны полностью обеспечить защиту на все сто процентов. Поэтому, во время грозы следует, по возможности, производить отключение наиболее важных потребителей от сети питания.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта. буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
Скачки напряжения пагубно влияют не только на электронику, но и на любую электротехнику в целом. Поэтому для защиты бытовых электроприборов требуется установка различных защитных устройств: ведь перепады напряжения могут вызвать различные неисправности. Одним из самых опасных видов считается импульсное перенапряжение, которое возникает по следующим причинам:
Для защиты от данного вида перенапряжений в быту и на производстве широко применяется специальное устройство УЗИП или ограничитель импульсных перенапряжений (ОПС).
Такое устройство защиты предназначено для установки в низковольтные (до 1000 В) силовые сети бытового и промышленного назначения. УЗИП обладает следующими достоинствами:
Эти факторы позволяют установить устройство в каждом доме или квартире, и обеспечить надежную защиту всего электрооборудования от импульсных скачков напряжения.
Основным элементом УЗИП является варистор, который выполнен из специального проводника. Уникальность разработки заключается в способности варистора пропускать электроток при многократно возросшем напряжении. При возникновении импульса сопротивление варистора падает до сотых долей Ома. В результате этого происходит шунтирование нагрузки, преобразование и рассеивание поглощенного импульса в виде тепловой энергии (нагревание корпуса).
Важно! Проводящий элемент варистора теряет свои характеристики после двух-трех разрядов молнии.
В большинстве моделей предусмотрено индикаторное окно, через которое можно визуально определить, является ли варистор работоспособным. Также в устройство защиты установлен предохранитель от сверхтоков.
Нормативные акты предписывают установку трехуровневой защиты от импульсных перенапряжений. Для этого выпускаются и применяются УЗИП трех видов:
Ограничители перенапряжения D класса отличаются компактными размерами и могут быть выполнены в различном исполнении. Часто их устанавливают в распределительных коробках или на отдельную розеточную группу, к которой подключены электронные приборы.
Наиболее популярными считаются ограничители серии ОПС1, которым отдают предпочтение профессиональные электромонтажники. Рассмотрим эти устройства более подробно.
Ограничительное устройство ОПС1 производится всех трех классов защиты: B, C, и D.
ОПС1 способно защитить любое электрооборудование. Благодаря компактным размерам такое устройство подходит для установки и подключения в обычном электрощите квартиры, коттеджа или офиса. Установка УЗИП в таких помещениях поможет спасти дорогостоящую технику и компьютерное оборудование. В загородных коттеджах, оборудованных системой «умный дом» монтаж ОПС1 предписывается инструкцией производителя, поскольку электронная начинка очень чувствительна к импульсным перенапряжениям. Также подобная защита требуется любым автономным системам жизнеобеспечения, наблюдения и безопасности.
Поэтому такое устройство устанавливается не только в частном секторе и городских квартирах, но и в административных, офисных, коммерческих и других зданиях.
ОСП1 имеет стандартные размеры и модульное исполнение: это позволяет без проблем установить устройство на DIN-рейку. При этом прибор может иметь от 1 до 4 сменных модулей (в зависимости от класса). Сменный модуль (отработанный варисторный разрядник) легко заменяется новым: для этого в центре корпуса предусмотрены направляющие, в которые и вставляется новый модуль. Это позволяет быстро произвести замену без отключения проводов и демонтажа всего устройства.
Применяемый в модуле варистор изготавливается из керамической смеси и окиси цинка, с добавлением специальных примесей для получения уникальных запирающих свойств. Также в каждом блоке предусмотрена защита от повышенной токовой нагрузки.
Для контроля работоспособности сменного блока предусмотрено окно с цветным указателем состояния. Для обеспечения надежного контакта на зажимах (клеммах) выполнены насечки, обеспечивающие большую площадь соприкосновения. Это автоматически уменьшает сопротивление самого контакта.
В зависимости от класса защиты и производителя, ограничители перенапряжения имеют такие характеристики:
Чтобы подключить устройство защиты, используются медные или алюминиевые провода сечением от 4 до 25 мм 2
Обратите внимание! При подключении ОПС1 важно соблюдать полярность. Для этого все клеммные зажимы на корпусе прибора имеют маркировку, какой провод следует подключить в этот разъем.
Теперь давайте рассмотрим, что представляет собой схема подключения УЗИП в энергосеть на примере частного дома.
На примере показано, как правильно выполнить подключение ограничителей перенапряжения зонально: такая схема признана наиболее эффективной. Именно концепция трехступенчатой защиты с размещением УЗИП внутри помещения нашла наибольшее применение на практике. При этом важно для каждой зоны устанавливать соответствующий класс ограничителя.
Обратите внимание! При монтаже ОСП1 важно выдерживать правильное расстояние между приборами: между ними должно быть минимум 10 метров.
Согласно принятым МЭК стандартам, любой объект, оборудованный электропроводкой, подразделяется на условные зоны. Деление (или классификация зон) осуществляется на основании теоретического воздействия грозового разряда: прямого или непрямого. С этой точки зрения выделяют несколько зон:
Деление на последующие внутренние области (зона 2, 3 и так далее), происходит в случае необходимости дальнейшего рассеивания импульсных токов или электромагнитного поля. Такое проектирование практикуется при необходимости размещения в этих зонах чувствительного электрооборудования или электронных устройств. Для каждой последующей области характерно уменьшение разрядного тока и влияния (мощности) электромагнитного поля.
Из этой статьи мы узнали назначение и конструктивные особенности ограничителей перенапряжений, важность их правильной установки. Также рассмотрели их классификацию, принцип работы и ознакомились с зональной концепцией защиты зданий и объектов.
Источники: http://aquagroup.ru/articles/ustroystvo-zashchity-perenapryazheniy-uzip-shema-podklyucheniya.html, http://podvi.ru/elektrotexnika/ustrojstvo-zashhity-ot-impulsnyx-perenapryazhenijuzipprimenenie.html, http://voltland.ru/other/ustrojstvo-zashchity-ot-impulsnyh-perenapryazhenij.html
electricremont.ru
Современные производители УЗИП делят их на три класса или выделяют различные их комбинации (1+2, 1+2+3). Давайте разберёмся, откуда взялась эта классификация и что она означает. В соответствии с ГОСТ Р 51992-2011 (МЭК 61643-1-2005) «Устройства защиты от импульсных перенапряжений низковольтные. Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний» все УЗИП должны быть подвергнуты испытаниям. Характер этих испытаний и их порядок строго регламентирован тем же ГОСТ. В зависимости от того, каким воздействиям при этом подвергают УЗИП, и выделяют классы испытаний. Да, именно так: привычные нам классы УЗИП – не что иное, как классы производимых над ними испытаний.
Для простоты понимания рассмотрим основные испытательные воздействия, которым подвергаются УЗИП:
В зависимости от комбинации и величины этих воздействий, выделяют следующие классы испытаний УЗИП:
1. УЗИП класса 1 предназначены для отвода частичных токов молнии и устанавливаются в случае, если есть риск удара молнии в систему внешней молниезащиты объекта или в воздушную линию. Соответственно, они должны быть испытаны импульсным током Iimp, номинальным разрядным током In и импульсом напряжения. Типичный УЗИП данного класса выдерживает Iimp 20-50 кА (на один полюс устройства) и ограничивает импульс напряжения до 4 кВ.
2. УЗИП класса 2 применяются как:
Они должны быть испытаны номинальным In и максимальным Imax разрядным током и импульсом напряжения. Типичный УЗИП данного класса выдерживает Imax до 40 кА, In из ряда 2,5; 3,0; 5,0; 10; 15 кА и ограничивает импульс напряжения до 1,5-2,5 кВ.
3. УЗИП класса 3 предназначены для защиты от остаточных (после срабатывания УЗИП 1 или 2 класса) или от повторно наведенных (при большой протяженности проводов) перенапряжений. Они должны быть установлены в непосредственной близости от защищаемого устройства.
Данные УЗИП подвергаются воздействию номинальным разрядным током In и импульсом напряжения. Типичные УЗИП данного класса выдерживает In до 10 кА и ограничивает импульс напряжения до 1,5-1,0 кВ.
Стало понятно, что для выбора подходящего УЗИП в первую очередь нужно задать 2 вопроса:
1. Есть ли риск прямого удара молнии в систему внешней молниезащиты объекта или в воздушную линию электропередачи, по которой он получает питание? (Нужен ли УЗИП класса 1)
2. До какого уровня нам необходимо ограничить импульс напряжения? (Нужны ли последующие ступени из УЗИП класса 2 и 3).
Главным ориентиром в ответе на второй вопрос служит электрическая прочность изоляции проводов и устройств, применяемых в объекте. Для обеспечения целостности электрических проводов обычно достаточно ограничить импульсное напряжение до 4 кВ; для защиты оборудования – 1,5-1 кВ.
Данная статья поясняет только основные принципы разделения УЗИП по классам испытаний. В техническом описании каждого УЗИП еще есть немало важных и нужных характеристик, по которым осуществляется его подбор в защищаемую сеть. Для более подробной консультации Вы всегда можете обратиться в наш технический центр.
www.zandz.ru
Существуют различные причины, по которым появляются перепады напряжения. Среди них такие, как грозы, появление перехлестов провода, работы сварочного характера, помехи в сети электропитания и различные ситуации аварийного характера.
С целью защиты электрической проводки дома и работающих в нем приборов-потребителей созданы специализированные устройства. Именно эти устройства и имеют название «устройства защиты от импульсных перенапряжений» (сокращенно УЗИП).
Наиболее надежным образом домовая сеть защищается при помощи использования сразу нескольких уровней защитной системы, собранной из устройств разных классов.
В большинстве случаев такая защита состоит из трех ступеней. Существует специальный ГОСТ (Р 51992-2002 (МЭК 61643-1-98)), который и регламентирует деление таких устройств на три класса.
Класс I (В). Устройства, принадлежащие к этому классу, защищают от прямых попаданий разряда молнии в молниезащитную систему строения, либо воздушные электросети. Монтаж этих устройств выполняют прямо в ВРУ, либо ГРЩ там, где кабель входит в здание. Эти устройства рассчитаны на разрядный ток порядка 30-60 килоАмпер.
Второй класс (С). Эти приборы предназначены для защиты сетей токораспределения объектов от появления помех коммутации. Они способны работать в качестве второй защитной ступени от попадания молнии. Их устанавливают в распредщите, а их ток разряда по номиналу 20-40 килоАмпер.
Класс III (D). Блоки, представляющие из себя защитные устройства этого класса, устанавливают прямо перед прибором-потребителем. По конструкции такие устройства могут быть самыми разными (розетка, вилка, отдельно монтируемый модуль, либо устройство навесного монтажа). Ток их разряда не превышает 5-10 кА.
Главным элементом построения таких устройств явился варистор или разрядник. Кроме того, в состав этих устройств входит устройство-индикатор, способное сообщить о том, что УЗИП вышел из строя.
Из отрицательных показателей этих «защитников» следует отметить тот, что они нагреваются при сработке, что стало причиной того, что им необходимо время для остывания, а это сильно уменьшает селективность работы устройства.
Монтируют такой прибор на ДИН-рейке, варистор же, вышедший из строя, легко меняется методом удаления последнего из корпуса.
Чтобы добиться защиты потребителя от ненужных воздействий в хорошем качестве, требуется обеспечение строений эффективными системами заземлений и уравниванием потенциалов. С этой целью используется заземляющая система типа TN-C либо TN-CS, имеющие разделение проводников нуля и защиты.
Затем монтируют устройства защиты, расстояние между которыми (от одного класса до другого) не должно быть менее 10 метров по питающему кабелю. Только при выполнении таких условий можно обеспечить правильную сработку защитных устройств.
На воздушных линиях, в щите ввода на столбах наилучшим образом срабатывают системы, основанные на разрядниках и плавких вставках.
Главные щиты зданий хорошо защищают УЗИП первого и второго класса, основанные на варисторах, а этажные щиты – снабжаются системами третьего класса. В качестве защиты дополнительного характера, розетки снабжаются системами в виде вставок и разных удлинителей.
Наконец, хочу заметить, что устройства подобного типа значительным образом уменьшают процент выхода из строя потребителей и поражения человека высоким напряжением, хотя и не способны полностью обеспечить защиту на все сто процентов. Поэтому, во время грозы следует, по возможности, производить отключение наиболее важных потребителей от сети питания.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
podvi.ru
Мощный трехфазный ограничитель перенапряжения 1+2 класса выполненный на базе варисторов, для защиты от прямых и отдаленных атмосферных разрядов. Применяется в системах заземления: TNS. Iimp (10/350)=50kA, Imax (8/20)=50kA
Подробнее...
Ограничитель перенапряжения 1+2 класса, выполненный на базе варистора с корпусом модульного типа, для защиты от прямых и отдаленных атмосферных разрядов. Применяется в системах заземления: TNS, TNC, TT. Iimp (10/350)=12.5, Imax (8/20)=50kA
Подробнее...
Ограничитель перенапряжения 1+2 класса, выполненный на базе варистора с корпусом модульного типа, для защиты от прямых и отдаленных атмосферных разрядов. Применяется в системах заземления: TNS, ТТ. Iimp (10/350)=25kA, Imax (8/20)=50kA
Подробнее...
Мощный трехфазный ограничитель перенапряжения 1+2 класса выполненный на базе варисторов, для защиты от прямых и отдаленных атмосферных разрядов. Применяется в системах заземления: TNC. Iimp (10/350)=37,5kA, Imax (8/20)=150kA
Подробнее...
Мощный трехфазный ограничитель перенапряжения 1+2 класса выполненный на базе варисторов и разрядника устанавливаемого между N и PE, для защиты от прямых и отдаленных атмосферных разрядов. Применяется в системах заземления: TNS, TT. Iimp (10/350)=50kA, Imax (8/20)=50kA
Подробнее...
igur-plus.ru