Защитная функция заземляющего устройства базируется на том принципе, что части электроустановок, прикосновение к которым в случае нарушения изоляционного слоя крайне опасно для человеческой жизни, необходимо соединять с заземляющим устройством. При этом, заземляющие устройства (заземлители) должны находиться непосредственно в грунте. Таким образом, создается необходимое сопротивление в электропроводящей сети. Оно получается весьма малое, а падение напряжения на нем не будет достигать критического значения. В итоге, удар тока, который получит человек в случае нарушения изоляционного слоя, будет не смертельным. Если человек соприкоснется с данной деталью, он будет в зоне действия пониженного напряжения. Чем лучше будет изготовлено заземляющие устройство (заземление), тем меньше вероятность того, что на корпусах электроприборов возникнет напряжение. Качество заземляющего устройства зависит, в первую очередь, от того, насколько велико его сопротивление. При этом, чем ниже сопротивление в данной сети, тем заземление качественнее. В этом случае, расходы материалов и труда будут несколько большими, нежели без изготовления заземления, однако безопасность конструкции будет в несколько раз выше. Заземляющие устройство представляют собой систему, включающую в себя несколько основных частей: Следует отметить, что каждый из указанных пунктов может быть устроен совершенно по-разному. В общем, заземляющее устройство, это совокупность заземлителя и заземляющего проводника. С его помощью производят заземление элементов или корпусов электроустановок. Достаточно часто заземляющие устройство выступает в роли грозоотвода, а также может выполнять функцию молниезащиты строения. Если же неподалеку находится вторая электроустановка, мощность которой не превышает 1 кВт, то для ее заземления можно использовать ту же заземляющую систему. С помощью данного решения в значительной степени снижаются расходы на сооружение заземления. В этом случае нормой будет служить наименьшее значение сопротивления растеканию тока. Вычисляют его, исходя из значений наименьшего сопротивления для каждой из объединенных в одном заземлителе электроустановок, при этом, необходимо взять наименьшее значение. В процессе изготовления рабочего заземления с заземляющим устройством соединяют какую-нибудь из точек электрической цепи. Сооружают рабочее заземление через специальные устройства, например, через пробивные предохранители, разрядники или резисторы. podvi.ru Большая часть домов в нашей стране оснащена системой электропередач, не имеющей заземления, по старому образцу. Необходимо помнить, что работа современных бытовых устройств без наличия заземляющего контура способствует возникновению в их деятельности различных неисправностей, и, как следствие, выходу из строя. Владельцам домов приходится самостоятельно производить устройство заземления, которое необходимо для создания электробезопасности. Основной задачей заземления является отключение напряжения сети при возникновении утечки тока. Это может быть выражено в виде прикосновения человека к токоведущим частям, повреждения изоляции электрических проводов. Другой, не менее важной функцией заземления является создание нормальных условий для работы бытовых электрических устройств. Некоторые устройства требуют кроме заземляющего контакта в розетке, еще и прямого подключения к шине заземления. Для этого имеются специальные зажимы. Например, микроволновая печь может создавать фон, опасный для человека, если ее не подключить напрямую к заземляющей шине. На задней стенке корпуса печи может находиться специальная клемма для заземления. А если прикоснуться влажными руками к стиральной машине без заземления, то руки может неприятно щипать. Решить эту проблему можно только, подключив «землю» на корпус стиральной машины. С электрической духовкой ситуация похожа на предыдущие случаи. Также своеобразно реагирует на наличие заземления бытовой компьютер. Если сделать заземление на корпус системного блока, то может повыситься скорость Интернета, и исчезнут всевозможные зависания. Не менее важным является устройство заземления в частных домах. Тем более, если дом деревянный. Все дело в возможных ударах молнии. На частных усадьбах много различных частей, которые притягивают молнии: скважины, трубы, колодцы и т. д. При отсутствии молниеотвода и контура заземления, удар молнии с большой вероятностью может привести к пожару. Обычно в сельской местности нет пожарной части, или она удалена, поэтому жилые и подсобные помещения могут пострадать или полностью выгореть за короткий срок. Вместе с заземлением рекомендуется выполнять устройство молниеотвода. Искусственные системы заземления используют в случаях, когда естественные элементы заземления не удовлетворяют правилам. В качестве естественных элементов могут служить водопроводные стальные трубы, находящиеся в земле, артезианские скважины, элементы зданий из металла, соединенные с землей и т.п. Запрещается применять бензопроводы, нефтепроводы и газопроводные трубы в виде естественных заземлителей. Для самодельных элементов заземления рекомендуется использовать металлический уголок 50 х 50 мм, в длину 3 метра. Эти отрезки забивают в землю в траншее, имеющей глубину 0,7 метра. При этом оставляют 10 см отрезков над дном. К ним приваривают проложенный в траншее стальной пруток диаметром от 10 до 16 мм, либо стальную полосу аналогичного сечения по всему контуру объекта. По правилам в электрических установках до 1000 вольт сопротивление контура заземления должно быть не выше 4 Ом. Для установок более 1000 вольт сопротивление заземления должно быть не выше 0,5 Ом. Всего существует 6 систем заземления, но в частных постройках используется чаще всего 2 схемы: TN — C — S и TT. В последнее время популярна первая из этих систем. В ней имеется глухозаземленная нейтраль. Шина РЕ и нейтраль N проводится одним проводом РЕN, на входе в здание устройство заземления разделяется на отдельные ветки. В такой схеме защита осуществляется электрическими автоматами, при этом не обязательно монтировать устройства защитного отключения. Недостатком такой схемы можно назвать следующий момент. Если повреждается проводник РЕN между подстанцией и домом, то на шине заземления в доме возникнет напряжение фазы. При этом оно не отключается никакой защитой. В связи с этим правила требуют обязательное наличие механической защиты проводника РЕN, и резервное заземление на столбах через каждые 200 метров. Однако, в селах электрические сети в основном не удовлетворяют этим требованиям. Поэтому целесообразно применять схему ТТ. Эту схему лучше применять для отдельных построек, имеющих грунтовый пол, так как есть вероятность прикосновения сразу к заземлению и грунту, что опасно при схеме TN – C — S. Отличие состоит в том, что «земля» идет на щит от индивидуального заземления, а не от подстанции. Эта система более устойчива к возникновению повреждений защитного проводника, но требует обязательной установки устройства защитного отключения. Иначе не будет защиты от удара током. Поэтому правила называют такую схему резервной. Существует два вида устройство заземления, отличающиеся способом монтажа и свойствами материалов. Один вид состоит из модульной штыревой конструкции заводского исполнения с несколькими электродами, а второй вид выполняется самостоятельно из кусков металлопроката. Эти виды отличаются заглубленными частями, а надземная часть и проводники аналогичны друг другу. Из недостатков заводского исполнения можно отметить высокую стоимость набора. Заземлители, изготовленные самостоятельно, должны быть выполнены из оцинкованного металлопроката: прутка, уголка, либо трубы. Купленные наборы состоят из омедненных штырей с резьбой. Они соединяются муфтами из латуни. Провод заземления соединяется со штырем зажимом из нержавейки с применением специальной пасты. Заземлители запрещается смазывать или окрашивать. При выборе сечения проката необходимо учесть тот факт, что при воздействии коррозии со временем сечение уменьшится. Наименьшие сечения проката выбираются: Штыри соединяют полосой, проволокой или уголком. Ими подводят заземление до электрического щита. Размеры соединяющего проката: пруток – диаметром 5 мм, прямоугольный профиль – 24 мм2. Для соединения всех проводников заземления нужно применять заземляющие шины, выполненные из электротехнической бронзы. По схеме ТТ элементы щита крепятся на стенку ящика. Заземлители, изготовленные самостоятельно, забивают в землю кувалдой, а заводские элементы с помощью отбойного молотка. В обоих вариантах целесообразно использовать стремянку. Прокат из черного металла сваривается ручной сваркой. Заземлители располагают от фундамента на расстоянии 1 метра. Размечается контур заземления в виде треугольника, окружности или линии. Расстояние между штырями должно быть не менее 1,2 м. Рекомендуется сделать треугольник с 3-метровой стороной, и длиной штырей 3 метра. Затем копают траншею глубиной 0,8 м. Ее ширина должна быть удобной для сварки проводников. Чаще всего делают траншею шириной 0,7 м. Электрод заостряется с помощью болгарки. Если металлопрокат, бывший в употреблении, то необходимо его очистить от старого покрытия. На штырь заводского исполнения навинчивается острая головка, место соединения смазывается специальной пастой. Электроды забивают в землю с помощью кувалды. Начинать удары лучше, находясь на стремянке или подмостьях. При мягком металле удары наносят через деревянные бруски. Штыри забиваются не до конца, над поверхностью дна оставляют 10-20 см для выполнения соединения с контуром. Заводские электроды забивают отбойным молотком. После заглубления штыря, на него навинчивают муфту и другой заземлитель. Далее процесс повторяют до достижения необходимой глубины. Штыри обычно соединяют полосой 40 х 4 мм. Для проката из черного металла используют сварочное соединение, так как болты быстро подвергнутся коррозии, что увеличит сопротивление контура. Сваривать необходимо качественным швом. Заземление от готового контура проводится полосой к дому, загибается и крепится на фундаменте. На краю полосы приваривают болт для крепления провода от щита. На последний электрод монтируется крепежный хомут и закрепляется провод. Зажим герметизируют специальной лентой. Для засыпания траншеи целесообразно использовать плотную однородную почву. Устройство заземления, приобретенное в магазине, с одним штырем, может иметь в комплекте пластмассовый колодец для ревизии. Распределительный щит фиксируется на стене здания, кроме мест с высокой влажностью. Сквозь стены провод проводят с применением трубных гильз. В щитке провод заземления соединяется с заземляющей шиной, установленной на корпусе щита, болтовым соединением. Сопротивление заземления проверяют мультиметром. Если оно оказывается больше 4 Ом, то нужно увеличить число электродов. На разъем шины заземления также подключаются провода заземления в желтой изоляции, которые приходят в щит от потребителей. При присоединении светильников, розеток, различных устройств желтые провода заземления также подключают к своим клеммам. Например, в розетках такая клемма с винтом расположена в центре. electrosam.ru Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством.Заземляющее устройство состоит из заземлителя (проводящей части или совокупности соединённых между собой проводящих частей, находящихся в электрическом контакте с землёй непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемую часть (точку) с заземлителем. Есть два вида заземлителей - естественные и искусственные. К естественным заземлителям относятся металлические конструкции зданий, надежно соединённые с землёй. В качестве искусственных заземлителей используют стальные трубы, стержни или уголок, длиной не менее 2,5 м, забитых в землю и соединённых друг с другом стальными полосами или приваренной проволокой. В качестве заземляющих проводников, соединяющих заземлитель с заземляющими приборами обычно используют стальные или медные шины, которые либо приваривают к корпусам машин, либо соединяют с ними болтами. Защитному заземлению подлежат металлические корпуса электрических машин, трансформаторов, щиты, шкафы. Защитное заземление значительно снижает напряжение, под которое может попасть человек. Это объясняется тем, что проводники заземления, сам заземлитель и земля имеют некоторое сопротивление. При повреждении изоляции ток замыкания протекает по корпусу электроустановки, заземлителю и далее по земле к нейтрали трансформатора, вызывая на их сопротивлении падение напряжения, которое хотя и меньше 220 В, но может быть ощутимо для человека. Для уменьшения этого напряжения необходимо принять меры к снижению сопротивления заземлителя относительно земли, например, увеличить количество искусственных заземлителей. Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением сопротивления заземляющего устройства, которое должно быть значительно меньше сопротивления фазных проводников и которое можно снизить, увеличивая площадь заземлителей или проводимость среды — используя множество стержней, повышая содержание солей в земле и т. д. Электрическое сопротивление заземляющего устройства определяется требованиями ПУЭ ("Правила устройства электроустановок").В первую очередь условия работы устройства заземления определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз.В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные.Защитные устройства необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки.Рабочие устройства предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях - как в нормальных, так и чрезвычайных.Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю.Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным.При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является паспорт заземляющего устройства – документ, который содержит всю информацию о параметрах заземляющего устройства (ЗУ) и в который впоследствии будут заноситься все изменения.Такие изменения часто касаются результатов обслуживания, когда осуществляется проверка ЗУ. Результаты осмотра ЗУ и возможного ремонта заносятся в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам такого обследования составляется протокол заземляющего устройства. Измерение сопротивления контура заземления проводится нашей электроизмериельной лабораторией. Подробные консультации и стоимость услуг Вы можете получить , связавшись с нами: elkomspec.ru Обустроенное заземление встречается сегодня практически в каждом доме. И это неудивительно, так как оно обеспечивает безопасную работу электрооборудования и непосредственно проводки. В этой статье поговорим о таком важном элементе, как заземлитель. Известно, что без такого элемента конструкция заземления не может существовать, и уж тем более выполнять поставленные задачи. Заземлитель — металлический проводник или армированный штырь, вкопанный на нужную глубину в грунт. Он может работать одиночно или в комплексе с другими электродами, например, в треугольном контуре. Перед этим элементом стоит основная функция контактировать с высоковольтным электричеством, однако нельзя судить о его оптимальной функциональности, если не определено сопротивление. Горизонтальный и вертикальный заземлители Обратите внимание! Сопротивление заземлителя должно быть очень низким. Только так можно рассчитывать на полноценную защиту домашней электрической цепи. Определившись с вопросом, что называется заземлителем перейдем к изучению его видов. Каждый вид электрода имеет конкретное назначение, которое мы и рассмотрим: Важно! Проводить монтаж глубинного заземлителя стоит исключительно при помощи буровых установок. Современный заземлитель Для домашних условий идеальным решением остается использование вертикальных заземлителей, чего не скажешь о промышленном направлении. Здесь, наоборот целесообразна установка анодного электрода. Его применяют для защиты трубопроводов и подземных сооружений. По сути материал достаточно надёжный и устойчив к воздействию коррозии. Данная разновидность заземления эффективно используется в местах песчаной, вечномерзлой и каменистой почвы. Также в условиях, где грунт имеет высокое удельное сопротивление и требуется специальное оборудование для установки обычных электродов. Важно! Используя стандартные электроды для устройства контура заземления в песчаной и других типах почвы с высоким сопротивлением, вам придется установить их множество (порядка 100). Полушаровый заземлитель На самом деле, как и штыревое заземление, электролитическое обладает некоторыми весьма важными достоинствами. Главным элементом данного типа заземления считается труба Г-образной формы. Она вбивается на определенную глубину, которая предварительно заполняется смесью из минеральных солей. Вещество впитывает воду из окружающего грунта, создавая при этом выщелачивание, вследствие чего образуется электролит. Затем этот же электрод проникает в почву, увеличивая ее токопроводимые свойства. Удельное сопротивление снижается, и как следствие уменьшается промерзание почвенного слоя. Часто после окончания изготовления проекта, происходит подтаивание грунта рядом с строением. К сожалению, это очень опасно для фундамента и грозит осадкой дома. Поэтому электрики рекомендуют при проектировании электролитического заземления учитывать фактор повреждения зданий, а, следовательно, требуют отдалятся от мест застройки. В условиях сильного промерзания почвы принято использовать горизонтальные электроды. Они являются доступными и простыми в монтаже. Однако, при любой возможности работать буровым оборудованием, лучше всего установить вертикальный заземлитель. Заземлитель с омедненным наконечником Заземлители электролитического типа требуют регулярной проверки на работоспособность. Проводят его обслуживание однажды в 2-3 года. Здесь важно определить превратилась ли смесь в электролит. Если электролит образовался, проводят замену смеси, то есть добавляют новый состав солей. Аналогично проверяется каждый электрод, если он не один. Таким образом, установка будет служить еще несколько лет. Важно! Достаточно заправить электрод минеральными солями высокого качества, и он прослужит порядка 10-15 лет. Но пренебрегать регулярным обслуживанием нельзя. Каждый отдельный тип заземлителя либо электрода имеет свои характеристики, которые важно учитывать при проектировании контура заземления. Рассмотрим каждый из них с подобранностями: Групповой заземлитель схема Одиночный заземлитель схема Смотрите схемы заземлителей с условными обозначениями ниже. Еще со школьной скамьи, а именно из уроков географии мы знаем, что коррозия — это природное разрушительное воздействие на металлические предметы и их оболочки, которые длительно находятся в земле. Чаще всего такой дефект материала происходит в местах повышенной влажности. Обычно коррозия возникает после 9-10 лет использования металлической конструкции, и несет определенные последствия для заземляющего устройства. Например, большие повреждения контура заземления плюс наличие ржавчины влечет за собой увеличение сопротивления. Важно! В зоне, где имеется риск скорейшего возникновения коррозии, целесообразно использовать материалы для сооружения контура заземления из нержавеющей стали. Случается, когда коррозия проникает и под оболочку заземляющего проводника, ведущего к основному электрическому щитку или трансформатору. В подобной ситуации опытные электрики рекомендуют использовать антикоррозийную смазку. Иногда места соединений обрабатывают жидкой изоляцией. Еще чаще детали контура заземления подвергаются коррозии при соединении металлов различной валентности. Но и на этот случай есть решение, — использовать специальные биметаллические соединители. Обратите внимание, степень агрессивности почвенной среды прямым образом влияет на возникновение коррозии в соединениях заземляющего устройства. Поэтому, еще на момент монтажа защитного оборудования следует обдумать методы защиты от разрушений металлических проводников. Вас могут заинтересовать: prokommunikacii.ru Мой рассказ будет состоять из трёх частей. Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части. Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей. Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт. Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя. На рисунке оно показано толстыми красными линиями: Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15). На рисунке он показан толстыми красными линиями: Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26). Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21) На рисунке они показаны толстыми красными линиями: Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание. На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями: Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме. Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования. Подробнее защитное назначение заземления можно рассмотреть на двух примерах: Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании. Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления. Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту. Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП. При достижении этого порога внутри разрядника возникает разряд :-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление). Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня. Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца. Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации. Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования. Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние. Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок. Для ориентирования приведу следующие значения: Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте. Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой: Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно. В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании. В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа. Подробнее о строительстве — в следующих частях. Продолжение: При подготовке данной части использовались следующие материалы: habr.com Отсутствие заземления электрооборудования или неправильное его выполнение может привести к производственному травматизму, выходу из строя приборов автоматизации или неправильной их работе, погрешности показаний измерительной техники. Это происходит в результате пробоя изоляции между токоведущими частями и корпусом оборудования. В результате на корпусе появляется напряжение и протекает электрический ток, который может нанести травму человеку и привести к сбоям в работе электрических устройств. Чтобы этого избежать, часть установки, не находящуюся в нормальном состоянии под напряжением, соединяют с заземляющим устройством. Этот процесс называется заземлением. Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть: Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем.В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей.Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний. Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном. Различают следующие системы заземления: Буквы в названиях систем взяты из латиницы и расшифровываются так:Т – (от terre) земляN – (от neuter) нейтральC – (от combine) объединятьS – (от separate) разделятьI – (от isole) изолированныйПо буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя. Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей.TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате.TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника.TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление. Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление. Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование. Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом с контуром заземления здания, выполненного из полосы металла при помощи сварки.Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу.Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат).Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1: Таблица 1 Сечение фазных проводников рассчитывается по токовой нагрузке потребителя. Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания.Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним. electry.ru О компании » Вопросы и ответы » Что такое заземляющее устройство? Заземление – это намеренное соединение элементов электроустановки с заземляющим устройством. Заземляющее устройство является неотъемлемой составляющей любой электрической установки мощностью 1 кВ и выше. Представляет собой совокупность заземляющих проводников и заземлителя. Заземлитель находится непосредственно в контакте с землей и соединяет с ней части электроустановки. Для того, чтобы обеспечить быстрое стекание на землю замыкания или тока пробоя, сопротивление заземляющего устройства необходимо как можно более низкое. Это также необходимо для быстрого срабатывания защитных реле при их наличии. В первую очередь условия работы устройства заземления определяются удельным сопротивлением земли, а также электрическими параметрами защитных и заземляющих проводников. Сопротивление земли необходимо тщательно учитывать в каждом отдельном случае, так как разница на тех или иных участках может составлять до 100 тысяч раз. В зависимости от целевого назначения, заземляющие устройства бывают рабочие, защитные и грозозащитные. Защитные устройства необходимы для защиты людей от поражающего действия электротока при непредвиденном замыкании фазы на нетоковедущие части электрической установки. Рабочие устройства предназначены для обеспечения необходимого режима функционирования электроустановки в любых условиях - как в нормальных, так и чрезвычайных. Грозозащитные заземляющие устройства необходимы для заземления тросовых и стержневых громоотводов. Их задача – отвод тока молнии в землю. Заземляющие устройства электроустановок во многих случаях могут выполнять одновременно несколько функций – к примеру, быть и рабочим и защитным. При сдаче в эксплуатацию заземляющего устройства монтажная организация должна предоставить всю необходимую документацию в соответствии с нормами и правилами. Основным документом является паспорт заземляющего устройства – документ, который содержит всю информацию о параметрах ЗУ и в который впоследствии будут заноситься все изменения. Такие изменения часто касаются результатов обслуживания, когда осуществляется проверка заземляющих устройств. Измерение сопротивления контура заземления проводится многофункциональным прибором MRU-101. Результаты осмотра и возможного ремонта заносятся в паспорт заземляющего устройства. Также часто необходимо проведение проверки технического состояния устройства с осуществлением замеров сопротивления. По результатам такого обследования составляется протокол заземляющего устройства. www.megaomm.ruЗаземление. Что это такое и как его сделать (часть 1). Заземляющее устройство
Заземляющие устройства - принцип работы, назначение и устройство заземления
Заземляющие устройства — основной принцип работы
Из чего состоит заземляющие устройство
Какие дополнительные функции может выполнять заземляющие устройство
Что такое рабочее заземление
Правила устройство заземления
Варианты и особенности
Монтаж заземления
Набор, приобретенный в торговой сети, имеет свои преимущества:
Материалы и инструменты
Сечение провода заземления в здании не должно быть меньше сечения провода фазы. К этим проводникам имеются требования по диаметру жил:
Земляные работы
Подготовка электрода (штыря)
Заглубление электродов
Соединение электродов
Засыпка траншеи
Проведение в щит
Понятие о заземлении и заземляющих устройствах
Заземлитель, как основной элемент устройства заземления
Что такое заземлитель? Общее описание
Виды заземлителей: тонкости их использования
Особенности электролитического заземления
Немного о достоинствах электролитического заземления
Принцип работы электрода
Как проверить электрод?
Групповой и одиночный заземлитель: характеристики
Что такое коррозия и какие несет последствия для заземлителей?
Заземление. Что это такое и как его сделать (часть 1) / Хабр
1 часть. Заземление
(общая информация, термины и определения)
2 часть. Традиционные способы строительства заземляющих устройств
(описание, расчёт, монтаж)
3 часть. Современные способы строительства заземляющих устройств
(описание, расчёт, монтаж)
В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования. Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений. Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.1 часть. Заземление
В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.А. Термины и определенияБ. Назначение (виды) заземления
Б1. Рабочее (функциональное) заземлениеБ2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащитыБ2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)Б2.3. Заземление в составе электросетиВ. Качество заземления. Сопротивление заземления.
В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтомВ1.2. Электрическое сопротивление грунта (удельное)В2. Существующие нормы сопротивления заземленияВ3. Расчёт сопротивления заземления
А. Термины и определения
Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта. Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).И попытаюсь “перевести” эти определения на “простой” язык.Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.Б. Назначение (виды) заземления
Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.Б1. Рабочее (функциональное) заземление
Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).Б2. Защитное заземление
Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).
Б2.1. Заземление в составе молниезащитыМолния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.В. Качество заземления. Сопротивление заземления.
Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт. Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).В1. Факторы, влияющие на качество заземления
Сопротивление в основном зависит от двух условий:
В1.1. Площадь контакта заземлителя с грунтом.Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)В2. Существующие нормы сопротивления заземления
Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.В3. Расчёт сопротивления заземления
Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.Строительство заземлителей
При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.Заземление электроустановок: правила и основные требования
Заземляющее устройство
Классификация систем заземления
Система ТN
Система TT
Система IT
Требования к заземлению электродвигателя
Сечение фазных проводников, мм2 Наименьшее сечение защитных проводников, мм2 S≤16 S 16 < S≤35 16 S>35 S/2 Требования к заземлению сварочных аппаратов
Что такое заземляющее устройство? | Элкомэлектро