Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Переработка бросового тепла в электричество. Как из тепла получить электричество


Как получить электричество из тепла

Схематически изобретение выглядит так. Когда один из контактов нагревается, в системе молекул возникает ток. Исследователи из Калифорнийского университета в Беркли под руководством Арунавы Майумдара предложили получать электрический ток с помощью использования давно известного эффекта. Однако делать это они решили совершенно новым способом.

В настоящее время существуют различные технологии получения тока из тепла. Самый известный – с помощью паровых турбин – считается малоэффективным.

«Чтобы генерировать ватт мощности электротока, расходуется три ватта, а остальные два рассеиваются в окружающем пространстве в виде тепла», — так поясняет недостаток паротурбин профессор Майумдар.

Для того чтобы трансформировать это «улетучивающееся» тепло в полезную энергию, можно использовать эффект Зеебека, который реализуется в термопарах. Он заключается в том, что электричество возникает в месте контакта двух металлов, находящихся при разных температурах.

Однако термопары не приобретают широкого распространения из-за высокой стоимости требующихся для них металлов. К тому же эффективность их довольно низка.

В новых экспериментах, проведённых Майумдаром и его коллегами, используются золотые наноэлектроды, контактирующие с тремя различными видами органических молекул. Как показали результаты опыта, при изменении температуры в этой системе — как и в обыкновенных термопарах — происходит возникновение тока. Это первый случай, когда эффект Зеебека наблюдается в органических молекулах.

Пока что этого результата удалось достигнуть в опытах с единственным таким контактом. Однако учёные утверждают, что могут сделать большое количество таких миниатюрных источников энергии.

Несмотря на то, что в опытах применяются золотые наночастицы, материала идёт на них немного, а что касается органических молекул, то они, по уверениям Майумдара, недороги и их несложно получить. В общем, судя по этому описанию, устройства на основе нового метода генерирования электричества должны получиться сравнительно недорогими.

Подробности исследования можно узнать из публикации в журнале Science.

Также читайте о необычных электрогенераторах: о тех, которые меньше монеты. и о тех, что можно имплантировать.

Преобразование тепла в электричество

Всем известно, что более 50% всей энергии, которая потребляется человечеством, теряется в виде выделения тепла. В настоящее время, учеными из разных стран ведется работа по созданию материалов-термоэлектриков, которые способны осуществить преобразование тепла в электричество. В результате проведенных исследований удалось получить такие термоэлектрические материалы, коэффициент преобразования которых в два раза выше, чем у самых популярных современных термоэлектриков.

Свойства термоэлектрических материалов

Результаты позволяют надеяться, что в ближайшем будущем получатся совершенно новые экологически чистые источники электрической энергии. На молекулярном уровне было произведено соединение кобальта, никеля, олова и марганца. Получился мультиферритовый сплав, обладающий совершенно новыми свойствами. Он объединяет в себе оптимальное сочетание электрических, эластичных и магнитных свойств. За счет этого происходит превращение материалов из одного в другой, а действие температуры приводит к обратимым фазовым превращениям. Во время демонстрации этого материала, он, при поглощении окружающего тепла, вызвал неожиданную выработку электричества в катушке индуктивности, окружающей его.

Таким образом, полученный материал, в перспективе может иметь огромное практическое значение. Например, преобразование тепла, выделяемого автомобилем, может быть использовано для зарядки аккумуляторов .

Принцип действия двигателя-электрогенератора

Кроме термоэлектриков, разрабатывается двигатель-электрогенератор, способный вырабатывать электроэнергию, эквивалентную двигателю внутреннего сгорания с такими же габаритными размерами.

В этом устройстве используется сжатие и расширение газов, происходящее в циклическом варианте. При этом, двигатель преобразует тепловую энергию вначале в механическую, а, затем, в электрическую. Его эффективность на 25% превышает аналогичные показатели стандартного двигателя внутреннего сгорания.

В отличие от обычных двигателей в электрогенераторе совершенно не имеется трущихся или движущихся частей, что позволяет эксплуатировать его в высокотемпературном режиме, не применяя специальных смазок, без всякого износа. При нагревании газа, он увеличивается в объеме и вызывает звуковые колебания, которые приводят к колебаниям пластины, исполняющей роль поршня. В свою очередь, поршень связан с генератором, который и вырабатывает электрическую энергию.

Таким образом, преобразование тепла в электричество имеет вполне реальные перспективы. Данные методы являются достаточно эффективными и экологически чистыми, поэтому, есть необходимость дальнейших разработок в этом направлении.

Вечный генератор электричества

Уверен, редко кто из читателей знает, что электрический ток можно получать из… «пустоты». Удивляться тут нечего – об этом и не было известно никому в мире вплоть до 1993 года, когда в отечественной лаборатории «Наномир» впервые подобным образом была извлечена электроэнергия. Сделано это было при помощи специального прибора, называемого резонатором.

Специалисты обнаружили, что резонансными свойствами обладают многие культовые предметы симметричной формы, например, кресты, звезды, короны, трезубцы, кусудамы… Последние вы уже знаете из занятий оригами.

Полученный ток был очень слабым, он регистрировался приборами на пределе чувствительности. Еще два года не удавалось создать мощного источника энергии, так как незатухающие электрические колебания могут возникнуть только в том резонаторе, степень симметрии которого превышает 100 000. Как же сделать лилию или трезубец с такой невероятной точностью? Ведь ошибка при размерах лепестков в 0.5 м не должна превышать нескольких микрон!

Но, если нельзя сделать точно столь сложный резонатор, то, может быть, найдутся сведения о прямолинейных преобразователях?

Кусудамы как раз и оказались подобным устройством. Они состоят из плоских элементов и обладают той формой, которую современными средствами можно изготовить с нужной точностью.

Хотите попробовать? Станете обладателем вечной лампы, которую не нужно включать в розетку, да и заменять не придется – она не перегорает.

Правда, заказать кусудаму придется обратиться на завод, где есть точные станки, и изготовить ее из материала, слабо деформирующегося при нагревании.

Чтобы кусудама стала преобразовывать энергию, ее поверхность необходимо отполировать и покрыть с помощью напыления проводящим материалом.

Лучший проводник – серебро, однако чистое серебро быстро покроется окислом, и «вечная» лампочка скоро погаснет. Дабы этого не случилось, поверх скин-слоя серебра нужно напылить защитный слой другого металла в 100 раз тоньше. Одного грамма золота хватит, чтобы защитить несколько «вечных» лампочек по 300 ватт.

Сама кусудама светить не будет. Она лишь превращает внутреннюю энергию эфира в электрические колебания, которые, как это ни странно, не излучаются в виде электромагнитных волн. На расстоянии вытянутой руки их уже невозможно зарегистрировать без высокочувствительного прибора. Кусудама является неизлучающей антенной. Она – резонатор.

Как же превратить невидимые колебания электрического и магнитного полей в видимый свет?

Здесь нам помогут знания об атомах, молекулах и кристаллах. Оказывается, достаточно в зону электромагнитных колебаний поместить кусочек кварца, и он засияет голубоватым светом. Это явление можно наблюдать, если минерал положить в микроволновую печь с прозрачной дверцей.

Может возникнуть вопрос: почему же тогда не светятся драгоценные камни, вставленные в золотую корону? Ведь она тоже резонатор. Тем, кто не догадался, напомню: степень симметрии резонатора должна быть больше 100 000. А у корон она, конечно, значительно ниже.

Напоследок отметим, что резонаторы обладают и другими не менее интересными свойствами. Полагают, что очень вероятно их использование в качестве двигателей на «летающих тарелках».

Грязь превращает тепло в электричество

Команда исследователей кафедры химических технологий и материаловедения университета штата Мичиган разработала материал, который является так называемым термоэлектриком. То есть с его помощью можно получать электричество из тепла. Процесс получения электрического заряда из разницы температур при помощи некоторых материалов, имеющих термоэлектрические свойства, не такое уж и новое открытие. Но уникальность работы ученых в том, что они смогли воссоздать подобный компонент практически из грязи. То есть не потратив при этом много денег и энергии.

Ранее термоэлектрические материалы получали из очень дорогих или очень токсичных компонентов. Теперешнее открытие, по словам самих исследований, открывает еще один путь к созданию недорогого и экологически чистого источника альтернативной энергии. Новый материал, по сути состоящий из обычной грязи, способен преобразовывать накопленное тепло в электрический ток .

Потенциал изобретения огромен. Взять хотя бы тепло, выделяемое головкой цилиндров двигателя автомобиля или «вылетающее» через выхлопную трубу. Если создать коллекторы, наполненные новым материалом, можно будет успешно преобразовывать отводимое тепло в полезное электричество. Тогда возможно концепция экологически чистого гибрида или электромобиля станет намного реальнее, чем сейчас.

Команда исследований под руководством профессора Дональда Морелли для создания энергоэффективной грязи использовала так называемые «тетраэдриты» – природные материалы, широко распространенные на Земле, которые имеют термоэлектрические свойства. Сами по себе в природном виде они малоэффективны. Но ученым удалось немного изменить и состав и умело соединить в один материал. В результате получился очень эффективный элемент.

Исследователи растирают добытые тетраэдриты в порошок, смешивают их между собой в определенных пропорциях, а затем при помощи температуры и давления создают образцы пригодные для практического применения. По словам ученых, разработанная ими технология, которую они, кстати, до конца не раскрывают, достаточно мало затратная как в денежном, так и в энергетическом плане.

ДОСТИЖЕНИЯ НАУКИ И ТЕХНИКИ НАЧАЛА 21-ГО ВЕКА

Исследователи из Калифорнийского университета в Беркли предложили получать электрический ток с помощью использования давно известного эффекта, однако совершенно новым способом. В настоящее время существуют различные технологии получения тока из тепла.

Например, с помощью паровых турбин – считается малоэффективным. Можно использовать эффект Зеебека, который реализуется в термопарах. Он заключается в том, что электричество возникает в месте контакта двух металлов, находящихся при разных температурах. Однако термопары не приобретают широкого распространения из-за высокой стоимости требующихся для них металлов и низкой эффективности.

В новых экспериментах используются золотые наноэлектроды, контактирующие с тремя различными видами органических молекул. При изменении температуры в этой системе — как и в обыкновенных термопарах — происходит возникновение тока. Т.е. наблюдается эффект Зеебека в органических молекулах. Учёные утверждают, что могут сделать большое количество таких миниатюрных источников энергии. Материала идёт на них немного, а органические молекулы недороги, и их несложно получить. Устройства на основе нового метода генерирования электричества должны получиться сравнительно недорогими.

Как получить электричество из тепла Земли?

Ученые разработали методику, позволяющую вырабатывать электричество из тепла, которое Земля выделяет в окружающее пространство.

Тепловую энергию Земли планируется использовать как возобновляемый источник энергии для производства электричества в некоторых районах планеты. В настоящее время не существуют технологий, позволяющих извлекать электричество из тепла Земли.

Новая методика разработана Федерико Капассо и его коллегами из Гарвардского университета. На создание методики ученых натолкнуло наблюдение, что планета «подогревает» космос с мощностью в 100 миллионов гигаватт. Авторы исследования создали схему особой «тепловой батареи», ориентируясь на данные о тепловом потоке, исходящем от Земли.

Этот прибор включает в себя набор особых антенн-выпрямителей и соединяющих электрических цепей. Прибор похож на индукционные петли, используемые в электронных билетах, а также «беспроводных» зарядных устройствах для мобильных телефонов.

Источники: www.membrana.ru, electric-220.ru, sedge.ru, silatoka.net, scsiexplorer.com.ua, class-fizika.narod.ru, www.myenergy.ru

Немного о деревянных домах

Есть всеми известная популярная фраза «мой дом – моя крепость». Это верно подмечено, дом нужен людям не только для защиты ...

Самый высокий человек на Земле

Древние предания донесли до нас рассказы о живших  когда-то людях гигантского роста – исполинах. Появление в мире исполинов  такого роста, о ...

Последние новости из космоса

На Международной космической стнации в ближайшее время будет проведена серия экспериментов, которая посвятят в том числе подготовке к полётам человека на ...

Аномальная зона Адыгеи

В Адыгее возможно наступление аномально жаркой погоды в летний период. В связи с этим в Министерстве труда и соцразвития ...

Районг – город термальных источников

Районг – это небольшой таиландский город, расположенный в восточной части Таиланда. Отдыхают здесь преимущественно солидные туристы. Это спокойный и тихий ...

Заколдованный остров Энваитенет

На озере Рудольф (Кения) расположен остров Энваитенет, что в переводе с языка местного племени эльмоло, значит “Без­возвратный”. Десятки лет остров ...

Туристический Мармарис сегодня

Аэропорт прилета в курорт Мармарис, является аэропорт в городе Даламан. Сам курорт находится примерно в 90 километрах, от города Даламан. Трансфер происходит по ...

Тайны Тибета: загадка гранитных дисков

В 1962 году немецкий журнал «Вегетарианская Вселенная» опубликовал заметку о загадочных 716 табличках с письменами из Тибета. Они были подобны граммофонным ...

Камера из космоса

Смотрите прямую трансляцию из Космоса прямо на своем компьютере. Возможно именно Вы увидете и запишите новое видео с НЛО ...

www.objectiv-x.ru

Преобразование тепла в электричество

Всем известно, что более 50% всей энергии, которая потребляется человечеством, теряется в виде выделения тепла. В настоящее время, учеными из разных стран ведется работа по созданию материалов-термоэлектриков, которые способны осуществить преобразование тепла в электричество. В результате проведенных исследований удалось получить такие термоэлектрические материалы, коэффициент преобразования которых в два раза выше, чем у самых популярных современных термоэлектриков.

Свойства термоэлектрических материалов

Результаты позволяют надеяться, что в ближайшем будущем получатся совершенно новые экологически чистые источники электрической энергии. На молекулярном уровне было произведено соединение кобальта, никеля, олова и марганца. Получился мультиферритовый сплав, обладающий совершенно новыми свойствами. Он объединяет в себе оптимальное сочетание электрических, эластичных и магнитных свойств. За счет этого происходит превращение материалов из одного в другой, а действие температуры приводит к обратимым фазовым превращениям. Во время демонстрации этого материала, он, при поглощении окружающего тепла, вызвал неожиданную выработку электричества в катушке индуктивности, окружающей его.

Таким образом, полученный материал, в перспективе может иметь огромное практическое значение. Например, преобразование тепла, выделяемого автомобилем, может быть использовано для зарядки аккумуляторов.

Принцип действия двигателя-электрогенератора

Кроме термоэлектриков, разрабатывается двигатель-электрогенератор, способный вырабатывать электроэнергию, эквивалентную двигателю внутреннего сгорания с такими же габаритными размерами.

В этом устройстве используется сжатие и расширение газов, происходящее в циклическом варианте. При этом, двигатель преобразует тепловую энергию вначале в механическую, а, затем, в электрическую. Его эффективность на 25% превышает аналогичные показатели стандартного двигателя внутреннего сгорания.

В отличие от обычных двигателей в электрогенераторе совершенно не имеется трущихся или движущихся частей, что позволяет эксплуатировать его в высокотемпературном режиме, не применяя специальных смазок, без всякого износа. При нагревании газа, он увеличивается в объеме и вызывает звуковые колебания, которые приводят к колебаниям пластины, исполняющей роль поршня. В свою очередь, поршень связан с генератором, который и вырабатывает электрическую энергию.

Таким образом, преобразование тепла в электричество имеет вполне реальные перспективы. Данные методы являются достаточно эффективными и экологически чистыми, поэтому, есть необходимость дальнейших разработок в этом направлении.

Вечный генератор электричества

electric-220.ru

Переработка бросового тепла в электричество

Экология потребления.Технологии: Тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.

Благодаря быстрой индустриализации, мир увидел развитие целого ряда технологий, которые генерируют бросовое тепло.  До сих пор это тепло часто рассматривается как отходы, что заставляет людей задуматься о том, каким же образом это огромное количество бросового тепла может быть преобразовано в источник электроэнергии.  Теперь, когда физики в Университете штата Аризона находят новые способы генерации энергии за счет тепла, эта мечта на самом деле становится реальностью.

Исследовательская группа университета штата Аризоны:

Профессор физики  Чарльз Стэффорд является руководителем исследовательской группы, и он вместе со своей командой работал над переработкой отходов в энергию. Результат их работы был опубликован в научном журнале  ACS Nano.

Ученый и соискатель степени доктора наук в Колледже Оптических Наук  Аризоны Джастин Бергфильд разделяет мнение, что "Термоэлектричество может преобразовать тепло непосредственно в электрическую энергию  устройством без движущихся частей. Наши коллеги в этой области говорят, что они уверены в том, что устройство, компьютерную модель которого мы разработали, может быть построено с характеристиками, которые мы видим в нашем моделировании ".  

Преимущества:

Ликвидация озоноразрушающих материалов: Использование сбросного тепла как форма электроэнергии имеет несколько преимуществ. Нужно принять во внимание, что с одной стороны теоретическая модель молекулярного термоэлектрического устройства поможет в повышении эффективности автомобилей, электростанций,  заводов и панелей солнечных батарей, а с другой, что термоэлектрические материалы, такие как  хлорфторуглероды (CFC ), которые разрушают озоновый слой, устарели.

 

Более эффективная конструкция:

Руководитель исследовательской группы Чарльз Стэффорд надеется на положительный результат. Он ожидает, что разработанный ими проект термоэлектрического устройства будет лучше в 100 раз предидущих достижений. Если конструкция, которую они с командой сделали, действительно заработает, то сбудется мечта всех тех инженеров, которые хотели генерировать энергию из отходов, но не имели требуемого эффективного и экономичного устройства для этого.

 

Нет необходимости в механизмах:

Изобретенное  Бергфильдом и Стэффордом устройство теплового преобразования не требуют каких-либо машин или озоноразрушающих химических веществ, как это было в случае с холодильниками и паровыми турбинами, которые ранее были использованы для преобразования отходов в электрическую энергию. Теперь же эта работа выполняется прослойкой резиноподобного полимера, что зажат между двумя металлами и действует как электрод. Термоэлектрические устройства являются автономными, не нуждаются в двигательных процессах, просты в изготовлении и обслуживании.

 

Утилизация отходов энергии:

В основном энергию вырабатывают автомобили и промышленность. Автомобильные и промышленные отходы могут быть использованы для выработки электроэнергии путем покрытия выхлопных труб тонким слоем разработанного материала. Также физики решили воспользоваться законом квантовой физики, который, впрочем, не очень часто используется, но дает отличные результаты, когда речь идет о генерации энергии из отходов.

 

Преимущества в сравнении с солнечной энергией:

Молекулярные термоэлектрические устройства могут помочь в генерации энергии солнца и уменьшить зависимость от фотоэлементов снизким КПД

 

Как это работает:

Работая с молекулами и размышляя как их использовать для термоэлектрического устройства Бергфильд и Стэффорд не нашли ничего особенного, пока один студент  не обнаружил, что эти молекулы имеют свою специальную функцию. Большое количество молекул было зажато между электродами и подвергались воздействию стимулирующего источника тепла. Поток электронов вдоль молекул был разделен на две части: первая часть потока сталкивалась с бензольным кольцом,  а вторая с потоком электронов вдоль каждой следующей ветви кольца.

Схема бензольного кольца была разработана таким образом, что электрон перемещается на большее расстояние по кругу, что является причиной выпадения из кольца двух электронов, достигающих друг друга в фазе на другой стороне бензольного кольца. Волны гасят друг-друга на стыке, а разрыв в потоке электрического заряда вызваный разницей температур создает напряжение между электродами.

 

Термоэлектрические устройства, разработанные Бергфильдом и Стэффордом могут генерировать мощность, которая  зажжет 100 ваттную лампочку  или повысить эффективность автомобиля на 25%.опубликовано econet.ru 

 

econet.ru

Физики в тысячи раз улучшили процесс превращения тепла в электричество

Подпишись на ежедневную рассылку РИА Наука

Спасибо за подписку

Пожалуйста, проверьте свой e-mail для подтверждения подписки

Американские физики нашли способ превращать тепло в электрический ток с очень высокой эффективностью при температурах, близких к абсолютному нулю, теперь можно будет создавать "вечные" электрогенераторы, в тысячи раз производительнее существующих сегодня устройств, говорится в статье, опубликованной в журнале Nature.

МОСКВА, 11 июл - РИА Новости. Американские физики нашли способ превращать тепло в электрический ток с очень высокой эффективностью при температурах, близких к абсолютному нулю, теперь можно будет создавать "вечные" электрогенераторы, в тысячи раз производительнее существующих сегодня устройств, говорится в статье, опубликованной в журнале Nature.

В начале 19 века немецкий физик Томас Зеебек открыл так называемый термоэлектрический эффект. В своих опытах Зеебек случайно обнаружил, что пластинки из двух разных металлов способны вырабатывать ток в том случае, если их температуры отличаются и они соединены проводником. Данный феномен - эффект Зеебека - в настоящее время используется при конструкции термодатчиков. Кроме того, данный эффект пытаются приспособить для превращения остаточного тепла на промышленных предприятиях в электрический ток.

Группа ученых под руководством Джозефа Хэрэманса (Joseph Heremans) из университета штата Огайо в городе Коламбус (США) изучала так называемый спиновый эффект Зеебека, особую разновидность термоэлектрического эффекта, возникающую в ферромагнетиках - металлах и сплавах, обладающих магнитными свойствами.

Как объясняют физики, ферромагнетики содержат в себе две группы электронов, обладающих разным спином - квантовой характеристикой электрона. Скорость движения и другие физические свойства частиц зависят от спина. Из-за этого при появлении разницы в температуре внутри ферромагнетика возникает любопытный эффект - в нем появляются два "канала", по каждому из которых двигаются электроны с разным спином. Разная скорость движения частиц позволяет превращать поток электронов с разным спином в электрический ток.

Хэрэманс и его коллеги обнаружили, что данный эффект возможен не только в ферромагнетиках, но и в других типах проводников, изучая свойства полупроводникового сплава индия и олова.

В ходе своих экспериментов авторы статьи выяснили, что внешнее магнитное поле превращает фрагменты полупроводника в преобразователь тепла в электричество, если температура окружающей среды близка к абсолютному нулю. По расчетам физиков, напряжение тока увеличивается на восемь милливольт при повышении разницы в температуре полюсов устройства на один градус Кельвина. Это примерно в тысячу раз больше, чем удавалось достичь на самых эффективных преобразователях тепла на основе ферромагнетиков.

"На самом деле, это новое поколение теплового двигателя. В 18 веке у нас были паровые двигатели, в 19 веке - двигатели внутреннего сгорания, а в 20 веке появились первые термоэлектрические материалы. Теперь мы пытаемся приспособить для этих целей и магнитное поле", - пояснил Хэрэманс.

Физики полагают, что их открытие будет в конечном итоге использовано для создания генераторов, преобразующих тепло в электричество. Такие устройства не будут иметь движущихся и ломающихся частей, благодаря чему они будут работать практически вечно. Тем не менее, до их появления физикам и инженерам предстоит решить массу проблем - пока такие устройства работают только при низкой температуре и в присутствии сильного магнитного поля.

ria.ru

Электричество из тепла :: Класс!ная физика

ДОСТИЖЕНИЯ НАУКИ И ТЕХНИКИ НАЧАЛА 21-ГО ВЕКА

Исследователи из Калифорнийского университета в Беркли предложили получать электрический ток с помощью использования давно известного эффекта, однако совершенно новым способом. В настоящее время существуют различные технологии получения тока из тепла.

Например, с помощью паровых турбин – считается малоэффективным. Можно использовать эффект Зеебека, который реализуется в термопарах. Он заключается в том, что электричество возникает в месте контакта двух металлов, находящихся при разных температурах. Однако термопары не приобретают широкого распространения из-за высокой стоимости требующихся для них металлов и низкой эффективности.

В новых экспериментах используются золотые наноэлектроды, контактирующие с тремя различными видами органических молекул. При изменении температуры в этой системе — как и в обыкновенных термопарах — происходит возникновение тока. Т.е. наблюдается эффект Зеебека в органических молекулах. Учёные утверждают, что могут сделать большое количество таких миниатюрных источников энергии. Материала идёт на них немного, а органические молекулы недороги, и их несложно получить. Устройства на основе нового метода генерирования электричества должны получиться сравнительно недорогими.

Источник: membrana.ru

Другие страницы по теме «Достижения науки и техники начала 21-го века»:

Электричество и магнетизм

Турникетный электрогенераторНовый тип солнечных батарейЭлектропроводный пластикСамый тонкий в мире проводРобот лазает по стенам с помощью электростатикиГенератор на коленеЭлектромагнитная пушкаЭлектроэнергия из дождяПлоский, гибкий и мощныйЭлектроэнергия из теплаХолодные трубы качают энергиюСамый большой сверхпроводниковый магнитСверхлегкий ДВСБеспроводная передача энергииЭлектроэнергия из молнийБатарейка из пластикаСверхскоростной электромоторЭлектроэнергия из водорослейДальнобойный электрошокерВарим яйцо с помощью сотового телефонаНайдена причина пылевых бурь

Читаем дальше:

МеханикаОптика ВолныТеплотаКосмосЭлектричествоРазное

И ЭТОГО ДОСТАТОЧНО

По страницам старых журналов

Знаменитый лорд Кельвин, будучи проницательным, ясно понимающим физическую суть дела ученым, с пренебрежением относился ко всякого рода искусственным классификациям, к которым так привержены посредственности.

«Говорят, есть три рода рычагов, — сказал он однажды на лекции. — Я не помню, какие из них первого, какие второго, а какие третьего рода, да это и неважно.Во всех трех случаях рычаг поворачивается вокруг точки опоры, и этого достаточно...»

class-fizika.narod.ru