Сотрудники Университета Альберты нашли принципиально новый способ получения электроэнергии из воды. Первый прототип электрокинетической батареи выдал 1 миллиампер электричества с напряжением около 10 В этого было достаточно, чтобы зажечь светодиод. В изобретении используется эффект разделения зарядов. Имеет место феномен, называемый, двойным электрическим слоем, когда ионы воды текут по каналу диаметром в 10 микрон с непроводящими стенками, на одном конце элемента питания возникает положительный заряд, на другом отрицательный. В прототипе наличествовало около 400-500 тысяч раздельных каналов. Профессор Костюк полагает, что в будущем такие водяные батарейки можно будет использовать в качестве элементов питания для смартфонов и КПК. Ничего нет невозможного. Казалось, две разные вещи, две различных ипостаси - электричество и вода, практически антагонисты, но возможно получение электрической энергии и таким образом.
Для этого вам понадобятся два металла, что образуют анод катод, один из них нужно воткнуть в дерево, а другой в почву. Недавно компания Tata Group подписала договор о сотрудничестве с Даниэлем Носера, ученым Массачусетского технологического института и по совместительству основателем компании SunCatalytix. Предметом их соглашения стала разработанная ученым технология получения электричества из обычной воды. Хотя аспекты их сотрудничества пока не разглашаются, уже сейчас ясно, что новая технология получения энергии позволит обеспечить электричеством более трех миллиардов человек по всему миру! Более того, заявляется, что технология Даниэля Носера позволяет вырабатывать энергию эффективнее, чем с помощью солнечных батарей. Носера и его команда недавно обнаружили, что помещенные в сосуд с водой искусственный кобальт и покрытая фосфатом кремниевая пластина порождают электричество. Как и в фотосинтезе, этот процесс возникает из-за «выбивания» под действием солнечного света водорода из молекулы воды . Все секреты нового способа выработки электричества пока не раскрываются, но уже сейчас доказано, что технология позволяет получить из 1,5 литра достаточно электроэнергии, чтобы обеспечить ею небольшой дом, а целый бассейн воды, в котором она будет обновляться один раз в день, выработает столько элекроэнергии, что её хватит для запуска завода! Несмотря на то, что работы пока находятся на этапе тестирования, команда Tata Group и Даниэля Носера уже предвидит, сколько миллиардов людей они смогут обеспечить электроэнергией. Правда, с оговоркой, что районы, которые особенно ощущают дефицит электричества, чаще всего ощущают и дефицит необходимой для их технологии воды. Объединившись в одну команду всего полтора месяца назад, Tata Group и Даниэль Носера уже задались вопросом, как, основываясь на их открытии, реализовать выработку электричества, используя вместо воды землю. Экологически чистое производство электричества из полученных электролитически водорода и кислорода - перспективная технология производства электроэнергии. Вы можете убедиться в этом самостоятельно, построив дома электролизную мини-электростанцию. Возьмите тонкую платиновую проволоку и отрежьте от неё два куска по 15 сантиметров длиной. Плотно обмотайте первый отрезок проволоки вокруг толстого гвоздя так, чтобы получилась спираль . Снимите спираль с гвоздя. Повторите то же самое для второго отрезка проволоки. Эти две спирали будут служить электродами. В качестве электродов следует использовать платиновую проволоку, либо никелевую проволоку с платиновым покрытием. Возьмите четыре коротких провода и зачистите их концы от изоляции. Затем скрутите конец первого провода с концом второго и с прямым участком проволочной спирали. После этого повторите операцию для оставшейся спирали - скрутите её свободный конец с концами третьего и четвёртого проводов. На деревянной палочке от мороженого закрепите электроды изолентой рядом друг с другом так, чтобы под изолентой располагались скрутки проводов с электродами, а сами спирали электродов не были закрыты изолентой. Поместите палочку с закреплёнными на ней проводами сверху стакана с водой так, чтобы спирали электродов были погружены в воду. Приклейте концы палочки к краям стакана небольшими кусками изоленты. Убедитесь, что в воду погружены только спирали, скрутки проводов должны находиться вне воды. Подсоедините один провод от первой спирали и один - от второй к вольтметру. Вольтметр при этом должен показывать нулевое напряжение. Иногда вольтметр может показывать ненулевое напряжение, например .01 В. Подсоедините 9-вольтовую батарейку к оставшимся концам провода на несколько секунд. Вы увидите, что на поверхности электродов, погружённых в воду, начали выделяться пузырьки газа. Это явление называется электролизом. На одном электроде при этом выделяется водород, а на другом - кислород. Отсоедините батарейку. Вы увидите, что вольтметр всё ещё показывает некоторое напряжение. Это платина электродов заставляет свободный кислород реагировать с водородом , при этом выделяется электричество, достаточное даже для того, чтобы запитать какие-нибудь низковольтные электрические устройства. В процессе получения такой электроэнергии не образуется никаких экологически вредных отходов, ведь всё, что получается в итоге - это вода и водяной пар. Источники: www.membrana.ru, electro-montazh.postroyforum.ru, itw66.ru, showsteps.ru, www.1958ypa.ru Из архивов НКВД известно, что с 1938 года гитлеровцы усиленно перевозили на подводных лодках оборудование и провизию в район Земли Королевы ... Испытать удачу, играя на игровых автоматах и разнообразных рулетках, являлось желанием многих людей. Мотивы при этом были разные. Если ... Сегодня авиационный производственный концерн из Комсомольска-на-Амуре, компании холдинга Сухой и Сбербанк России заключили многостороннее соглашение по производству многоцелевого истребителя Су-35. ... Самовозгорание человека без видимой причины, бесспорно, является тайной, однако не меньшей загадкой является невосприимчивость к огню. Во всем мире есть ... Ледники Гренландии и Антарктиды тают с катастрофической скоростью. Несмотря на многочисленные исследования, ученые все же не могут точно ответить на ... Координаты: 16º ю.ш. 5º45´ з.д. Остров находится в 1950 км к западу от побережья Африки и в 2900 км к востоку от ... Самыми необычными монетами считаются деньги острова Яп. Это затерянная в океане столица Федеративных Штатов Микронезии, в которой существует «каменная ... Общество Туле стало известно в Германии первоначально как Германский орден. Данная группа появилась в период окончания Первой мировой войны как «литературная ... Смена обстановки в квартире всегда бывает на пользу. Как минимум, для улучшения настроения. Но как быть, если на ремонт ... Самая длинная река в мире, считая от истока до устья – это Амазонка, длина которой 4,345 км от Перуанских Анд по ... www.objectiv-x.ru Никогда не знаешь, когда может понадобиться электричество, будь это электричество для самодельных лампочек с обугленными волокнами бамбука вместо нити накаливания, чтобы скрасить и согреть темные ночи на необитаемом острове, или ток для реанимации рации либо мобильного телефона. Итак …. Как добыть электричество из дерева? Для практически любого простейшего способа получения электричества без подключения к уже имеющейся электрической сети, обязательно понадобятся гальванические элементы, а именно два металла, которые в паре образуют разнополярные анод и катод соответственно. Теперь остается воткнуть в ближайшее дерево один из них, например, алюминиевый стержень или железный гвоздь так, чтобы он полностью вошел через кору в сам ствол дерева; а другой элемент, например, медную трубку, воткнуть в почву рядом, чтобы она вошла в землю на 15-20 см. Не удивлюсь, если между медной трубкой и алюминиевым стержнем возникнет напряжение в приблизительно 1 вольт. Чем больше стержней вы вставите в дерево, тем лучше будет качество электроэнергии, добываемой таким способом. Как добыть электричество из фруктов? Апельсины, лимоны и другие цитрусовые, - все это идеальный электролит для выработки электричества в экстремальных условиях, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро если на вас или вашей спутнице остались украшения, доведя напряжение вашего электричества аж до 2 вольт. В том случае, если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам эдиссон! Как добыть электричество из воды? Таким образом, если у вас есть медная проволока и фольга, получение электричества в этом случае, займёт минимум усилий. Наполняем несколько стаканов соленой водой и мы соединяем их медной проволокой, от стакана к стакану. На один конец каждого провода, соединяющего стаканы, должна быть намотана алюминиевая фольга. Соответственно, чем больше проволоки и стаканов. Тем выше ваши.Шансы! Как добыть электричество из картофеля? Из клубней обычной картошки, тоже можно получить электричество, все что вам понадобится, это соль, зубная паста, провода и картофелина. Разрежьте её пополам ножом, через одну половинку проведите провода, в то время как в другой сделайте по центру углубление в форме ложки, после чего наполните её зубной пастой, смешанной с солью. Соедините половинки картошки, причем провода должны контачить с зубной пастой, а их самих лучше зачистить. Все! Теперь вы можете при помощи вашего генератора электричества, зажигать костры от электрической искры. Как добыть электричество из воздуха? Однозначно построить ветряк, что кстати не так уж и сложно. Все что вам понадобится это винтообразные лопасти, вращаемые силой ветра, и генератор электричества для преобразования механической энергии в электроэнергию. Его кстати можно просто вытащить из поломанного автомобиля! Как сделать простейший аккумулятор? Свинец и серная кислота уже не один десяток лет зарекомендовали себя как универсальный генератор электричества с превосходным качеством электроэнергии, использующийся повсеместно, например, в аккумуляторах различных транспортных средств. Для этого вам понадобятся оба компонента, соединить которые нужно в керамической посуде (найти в экстремальных условиях глину и обжечь её не должно составить для вас труда. В случае если вопрос остался за серной кислотой, то получите её из серы, обжигая её при избытке кислорода и воды не трудно. Лишь в том случае, если нет ни того ни другого, электричество принесет вам минерал "Галенит", который уже при температуре 327 градусов в смеси с углем расплавляется на серу и свинец. science.ru-land.com В этой статье хотелось больше раскрыть данную тему и привести некие примеры. И так, начну обзор данной темы под заглавием источники электроэнергии либо как делают электричество. Основной и, пожалуй, самой главной частью хоть какой электростанции дающей электроэнергию, конечно является электрогенератор. Это электрическое устройство которое способно превращать механическую работу в электричество.Снаружи он похож на обыденный электродвигатель, ну и снутри не на много отличается. Основной принцип деяния и работа, основаны на законе электрической индукции Фарадея. Для выработки ЭДС нужны два условия. Во первых это контур в виде медной обмотки и наличие магнитного потока, который, обычно, создается обыденным магнитом или дополнительной обмоткой.Таким макаром, для того чтоб появилось хотимое ЭДС на выходе электрогенератора, нужно привести в движение или магнит либо обмотку относительно друг дружку. Магнитный поток, пройдя через контур, в итоге и создаёт электричество. Причём скорость вращения впрямую оказывает влияние на величину вырабатываемого напряжения. Сейчас имея представление об электрогенераторе нам всего только нужно отыскать источник движения для него, другими словами источники электроэнергии. Давайте с Вами разберём главные источники электроэнергии. В 1882 году величавый учёный Томас Эдисон запустил первую в мире термическую электрическую станцию (ТЭС), работающую на паровом движке. В то время паровой движок был наилучшим устройством для сотворения движения, будь то паровоза либо производственного станка и естественно не умопомрачительно, что электрическая станция тоже была на нём. При нагревании воды в котле, появляется пар высочайшего давления, который подавался на лопасти турбины или цилиндр с поршнем, тем толкая его, в итоге производя механическое движение за счет нагрева воды. В качестве горючего обычно употребляют уголь, мазут, природный газ, торф, одним словом то, что отлично пылает.Гидроэлектростанции – это особые сооружения, построенные на местах падения реки, тем используя её энергию для вращения электрогенератора. Пожалуй самый безобидный метод получения электроэнергии, так как не происходит сжигание горючего и не оставляет после себя вредных отходов. Бежит для себя вода и даёт нам электричество.Атомные электростанции – в принципе очень похожи на термические, разница только в том, что в ТЭЦ употребляют горючее горючее для нагрева воды и получения пара, а в АЭС источником нагрева служит тепло выделяемое при ядерной реакции. Другими словами в реакторе находится радиоактивное вещество, обычно, УРАН, который при своём распаде выделяет огромное количество теплоты, и тем нагревая котёл с водой, с следующим выделением пара, для вращения турбины и электрогенератора. С одной стороны атомные электростанции очень прибыльные, так как при своём малом количестве вещества, способны выдавать много энергии. Но не всё так сладко. Хоть АЭС и предугадывает высшую степень безопасности, но все, же бывают и проколы как Чернобыльская АЭС. Ну и после отработки ядерного горючего, отходы всё же остаются и их необходимо куда-то девать. В общем, думаю, неувязка ясна. Также существует огромное огромное количество и еще наименее применяемых источников электроэнергии в отличие от главных. Это например ветряные электрогенераторы, которые обыденную силу ветра превращают конкретно в электронный ток. Здесь всё просто, ветряная лопасть, приверченная к генератору, есть ветер, и есть электричество.В ближайшее время набирают очень большею популярность солнечные батареи, которые в отличии то электрогенератора употребляют другой механизм работы. На самом деле он основан на преобразовании солнечных лучей солнца, а поточнее его фотонов.Фотоэлемент состоит из 2-ух тонких слоев полупроводникового материала, при попадании в границу соприкосновения 2-ух полупроводников солнечной радиации, появляется ЭДС, которая потом, может выдавать на собственных выходных электродах электронный ток. Это, пожалуй, самые ходовые методы получения электричества, хотя их естественно больше. На этом буду заканчивать эту тему – Источники электроэнергии либо как делают электричество. elektrica.info Оглавление. Введение……………………………………………….………….2 I . Основные способы получения энергии…………………….3 1. Тепловые электростанции……………..…………………3 2. Гидроэлектростанции……………………………………5 3. Атомные электростанции……………………..…………6 II . Нетрадиционные источники энергии……………………..9 1. Ветровая энергия…………………………………………9 2. Геотермальная энергия…………………………………11 3. Тепловая энергия океана……………………………….12 4. Энергия приливов и отливов…………………………...13 5. Энергия морских течений………………………………13 6. Энергия Солнца…………………………………………14 7. Водородная энергетика…………………………………17 Введение. Научно-технический прогресс невозможен без развития энергетики, электрификации. Для повышения производительности труда первостепенное значение имеет механизация и автоматизация производственных процессов, замена человеческого труда машинным. Но подавляющее большинство технических средств механизации и автоматизации (оборудование, приборы, ЭВМ) имеет электрическую основу. Особенно широкое применение электрическая энергия получила для привода в действие электрических моторов. Мощность электрических машин (в зависимости от их назначения) различна: от долей ватта (микродвигатели, применяемые во многих отраслях техники и в бытовых изделиях) до огромных величин, превышающих миллион киловатт (генераторы электростанций). Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом. Вместе с тем запасы традиционных природных топлив (нефти, угля, газа и др.) конечны. Конечны также и запасы ядерного топлива - урана и тория, из которого можно получать в реакторах-размножителях плутоний. Поэтому важно на сегодняшний день найти выгодные источники электроэнергии, причем выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, дешевизны материалов, необходимых для постройки станции, долговечности станций. Данный реферат является кратким, обзором современного состояния энергоресурсов человечества. В работе рассмотрены традиционные источники электрической энергии. Цель работы – прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике. К традиционным источникам в первую очередь относятся: тепловая, атомная и энергия потка воды. Российская энергетика сегодня - это 600 тепловых, 100 гидравлических, 9 атомных электростанций. Есть, конечно, несколько электростанций использующих в качестве первичного источника солнечную, ветровую, гидротермальную, приливную энергию, но доля производимой ими энергии очень мала по сравнению с тепловыми, атомными и гидравлическими станциями. I . Основные способы получения энергии. 1. Тепловые электростанции. Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС — основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973). Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно снижается, вследствие уменьшения температуры теплоносителя. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в одельно стоящем доме становится экономически выгодна. На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции. Теплоэлектроцентраль отличается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рис. штриховая линия), отбирается от промежуточной ступени турбины и используется для теплоснабжения. Конденсат насосом 7 через деаэратор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии. Коэффициент полезного действия ТЭЦ достигает 60—70%. Такие станции строят обычно вблизи потребителей — промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе. Рассмотренные тепловые электростанции по виду основного теплового агрегата — паровой турбины — относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Современные паровые турбины для ТЭС — весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются. Из курса физики известно, что КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру — почти до 550 °С и давление — до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром. По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах. К сожалению, запасы нефти, газа, угля отнюдь не бесконечны. Природе, чтобы создать эти запасы, потребовались миллионы лет, израсходованы они будут за сотни лет. Сегодня в мире стали всерьез задумываться над тем, как не допустить хищнического разграбления земных богатств. Ведь лишь при этом условии запасов топлива может хватить на века. Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического. оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию. По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая mirznanii.com Производство электроэнергии в мире в наши дни играет огромную роль. Она - стержень государственной экономики любой страны. Гигантские суммы денег ежегодно вкладываются в производство и использование электроэнергии и научные исследования, связанные с этим. В повседневной жизни мы постоянно сталкиваемся с ее действием, поэтому современный человек должен иметь представление об основных процессах ее выработки и потребления. Производство электроэнергии осуществляется из других ее видов при помощи специальных устройств. Например, из кинетической. Для этого применяют генератор – прибор, преобразующий механическую работу в электрическую энергию. Другие существующие способы ее получения - это, например, преобразование излучения светового диапазона фотоэлементами или солнечной батареей. Или производство электроэнергии путем химической реакции. Или использование потенциала радиоактивного распада либо теплоносителя. Вырабатывают ее на электростанциях, которые бывают гидравлическими, атомными, тепловыми, солнечными, ветряными, геотермальными и проч. В основном все они работают по одной схеме - благодаря энергии первичного носителя определенным устройством вырабатывается механическая (энергия вращения), передаваемая затем в специальный генератор, где и вырабатывается электроток. Производство и распределение электроэнергии в большинстве стран ведутся путем строительства и эксплуатации ТЭС - тепловых электростанций. Их функционирование требует большого запаса органического топлива, условия добычи которого из года в год усложняются, а стоимость растет. Коэффициент полезной отдачи топлива в ТЭС не слишком высок (в пределах 40%), а число экологически грязных отходов велико. Все эти факторы снижают перспективность такого способа выработки. Наиболее экономично производство электроэнергии гидроэнергетическими установками (ГЭС). КПД их доходит до 93%, себестоимость 1 кВт/ч впятеро дешевле других способов. Природный источник энергии таких станций практически неисчерпаем, количество работников - минимально, ими легко управлять. По развитию данной отрасли наша страна - признанный лидер. К сожалению, темпы развития ограничены серьезными затратами и длительными сроками строительства ГЭС, связанными с их удаленностью от больших городов и магистралей, сезонным режимом рек и трудными условиям работы. Кроме того, гигантские водохранилища ухудшают экологическую ситуацию - затапливают ценные земли вокруг водоемов. В наши дни производство, передача и использование электроэнергии производятся атомными электростанциями - АЭС. Они устроены практически по тому же принципу, что и тепловые. Главный их плюс - малое количество требующегося топлива. Килограмм обогащенного урана по своей производительности эквивалентен 2,5 тыс. тонн угля. Именно поэтому АЭС теоретически можно строить в любом районе независимо от наличия близлежащих топливных ресурсов. В настоящее время запасы урана на планете значительно больше, чем минерального горючего, а воздействие АЭС на окружающую природу минимально при условии безаварийной работы. Огромный и серьезный недостаток АЭС - вероятность страшной аварии с непредсказуемыми последствиями, отчего для их бесперебойной работы требуются очень серьезные меры по обеспечению безопасности. К тому же производство электроэнергии на АЭС регулируется с трудом - как для их запуска, так и для полной остановки понадобится несколько недель. И практически отсутствуют технологии утилизации опасных отходов. Производство и передача электроэнергии осуществимы благодаря электрогенератору. Это устройство преобразования любых видов энергии (тепловой, механической, химической) в электрическую. Принцип его действия построен на процессе электромагнитной индукции. ЭДС индуктируется в проводнике, который движется в магнитном поле, пересекает его силовые магнитные линии. Таким образом, проводник может служить источником электроэнергии. Основа любого генератора - система электромагнитов, формирующих магнитное поле, и проводников, которые его пересекают. Большинство всех генераторов переменного тока основаны на применении вращающегося магнитного поля. Его неподвижную часть именуют статором, подвижную - ротором. Трансформатор – электромагнитное статическое устройство, предназначенное для преобразования одной системы тока в другую (вторичную) при помощи электромагнитной индукции. Первые трансформаторы в 1876 г. были предложены П. Н. Яблочковым. В 1885 г. венгерскими учеными разработаны промышленные однофазные приборы. В 1889-1891 гг. изобретен трехфазный трансформатор. Простейший однофазный трансформатор состоит из стального сердечника и пары обмоток. Применяются они для распределения и передачи электроэнергии, ведь генераторы электростанций вырабатывают ее при напряжении от 6 до 24 кВт. Передавать ее выгодно при больших значениях (от 110 до 750 кВт). Для этого на электростанциях устанавливают повышающие трансформаторы. Ее львиная доля идет на снабжение электричеством предприятий промышленности. Производство потребляет до 70% всей вырабатываемой в стране электроэнергии. Эта цифра значительно разнится для отдельных регионов в зависимости от климатических условий и уровня индустриального развития. Другая статья расходов - снабжение электротранспорта. От электросетей ЭЭС работают подстанции городского, междугороднего, промышленного электротранспорта, использующего постоянный ток. Для транспорта на переменном токе применяются понижающие подстанции, которые тоже потребляют энергию электростанций. Другой сектор потребления электроэнергии - коммунально-бытовое снабжение. Потребителями здесь являются здания жилых районов любых населенных пунктов. Это дома и квартиры, административные здания, магазины, заведения образования, науки, культуры, здравоохранения, общественного питания и т. д. Производство, передача и использование электроэнергии - три кита отрасли. Причем передать полученную мощность потребителям – самая сложная задача. "Путешествует" она главным образом посредством ЛЭП - воздушных линий электропередачи. Хотя все чаще начинают применять кабельные линии. Вырабатывается электроэнергия мощными агрегатами гигантских электростанций, а потребителями ее служат относительно небольшие приёмники, разбросанные по обширной территории. Существует тенденция концентрировать мощности, связанная с тем, что с их увеличением уменьшаются относительные затраты возведения электростанций, а следовательно, и себестоимость получаемого киловатт-часа. На принятие решения о размещении крупной электростанции влияет ряд факторов. Это вид и количество имеющихся в наличии ресурсов, доступность транспортировки, климатические условия, включенность в единую энергосистему и т. д. Чаще всего электростанции строятся вдали от крупных очагов потребления энергии. Эффективность ее передачи на немалые расстояния влияет на успешную работу единого энергетического комплекса огромной территории. Производство и передача электроэнергии должны происходить с минимальным количеством потерь, главная причина которых - нагрев проводов, т. е. увеличение внутренней энергии проводника. Для сохранения передаваемой на большие расстояния мощности нужно пропорционально увеличить напряжение и уменьшить в проводах силу тока. Математические расчеты показывают, что величина потерь в проводах на нагрев обратно пропорциональна квадрату напряжения. Именно поэтому электроэнергию на большие расстояния передают при помощи ЛЭП - высоковольтных линий электропередач. Между их проводами напряжение исчисляется десятками, а порой сотнями тысяч вольт. Электростанции, расположенные неподалеку друг от друга, объединяются в единую энергосистему именно при помощи ЛЭП. Производство электроэнергии в России и ее передача ведутся путем централизованной энергетической сети, в которую входит огромное количество электростанций. Единое управление системой гарантирует постоянную подачу потребителям электроэнергии. Как формировалась единая электрическая сеть в нашей стране? Попробуем заглянуть в прошлое. До 1917 года производство электроэнергии в России велось недостаточными темпами. Страна отставала от развитых соседей, что отрицательно сказывалось на экономике и обороноспособности. После Октябрьской революции проект электрификации России разрабатывался Государственной комиссией по электрификации России (сокращенно ГОЭЛРО), возглавляемой Г. М. Кржижановским. С ней сотрудничали более 200 ученых и инженеров. Контроль осуществлялся лично В. И. Лениным. В 1920 г. был готов «План электрификации РСФСР», рассчитанный на 10-15 лет. Он включал восстановление прежней энергосистемы и строительство 30 новых электростанций, оборудованных современными турбинами и котлами. Главная идея плана - задействовать гигантские отечественные гидроэнергоресурсы. Предполагались электрификация и коренная реконструкция всего народного хозяйства. Упор делался на рост и развитие тяжёлой промышленности страны. Начиная с 1947 года СССР стал первым в Европе и вторым в мире производителем электроэнергии. Именно благодаря плану ГОЭЛРО была сформирована в кратчайшие сроки вся отечественная экономика. Производство и потребление электроэнергии в стране вышло на качественно новый уровень. Выполнение намеченного стало возможным благодаря сочетанию сразу нескольких важных факторов: высокого уровня научных кадров страны, сохранившегося с дореволюционных времен материального потенциала России, централизации политической и экономической власти, свойству российского народа верить "верхам" и воплощать провозглашаемые идеи. План доказал эффективность советской системы централизованной власти и государственного управления. В 1935 году принятая программа была выполнена и перевыполнена. Построено 40 электростанций вместо запланированных 30, введено мощностей почти втрое больше, чем предусматривалось по плану. Возведено 13 электроцентралей мощностью по 100 тыс. кВт каждая. Общая мощность российских ГЭС составила около 700 000 кВт. В эти годы были возведены крупнейшие объекты стратегического значения, такие как всемирно известная Днепровская ГЭС. По суммарным показателям Единая советская энергосистема превзошла аналогичные системы самых развитых стран Нового и Старого Света. Производство электроэнергии по странам Европы в те годы значительно отставало от показателей СССР. Если до революции в деревнях России электричества практически не существовало (небольшие электростанции, устанавливаемые крупными землевладельцами не в счет), то с реализацией плана ГОЭЛРО благодаря использованию электроэнергии сельское хозяйство получило новый толчок к развитию. На мельницах, лесопилках, зерноочистительных машинах появились электродвигатели, что способствовало модернизации отрасли. Помимо того, электричество прочно вошло в быт горожан и селян, в буквальном смысле вырвав "темную Россию" из мрака. www.syl.ru Единичным элементом термоэлектрического модуля (ТЭМ) является термопара, состоящая из двух разнородных элементов с p- и n- типом проводимости. Элементы соединяются между собой при помощи коммутационной пластины из меди. В качестве материала элементов традиционно используются полупроводники на основе висмута, теллура, сурьмы и селена. Термоэлектрический модуль (Элемент Пельтье) представляет собой совокупность термопар, электрически соединенных, как правило, последовательно. В стандартном термоэлектрическом модуле термопары помещаются между двух плоских керамических пластин на основе оксида или нитрида алюминия. Количество термопар может изменяться в широких пределах - от единиц до сотен пар, что позволяет создавать ТЭМ практически любой холодильной мощности - от десятых долей до сотен ватт. Лабораторная работа.Элементы Пельте широко используются в системах охлаждения. Но не многие знают об их другом свойстве – вырабатывать энергию. Изучению этих их возможностей и посвящена данная лабораторная работа. 50*50 мм элемент, установлен между двумя алюминиевыми брусками. Предварительно их поверхности притёрты и смазаны пастой КПТ. В одном из брусков просверлены сквозные отверстия, через которые пропущена медная трубка, для водяного охлаждения. Вот, что получилось Подключаем воду к охладителю и питание к Пельтье, проверяем работу элемента. Через десять минут брусок охладился до -10 градусов, а через 30 ещё больше. В помещении 22 градуса. Чтож, всё хорошо работает, я в этом и не сомневался. Теперь отключаем блок питания и вместо него припаиваем 10Вт 6 вольтовою лампочку и ставим наш агрегат на конфорку. Опыт доказывает, что элемент Пельтье хорошо вырабатывает электричество. Лампочка горит достаточно ярко, напряжение около 4.5 вольта. Нагрев до 160 градусов оказался не оптималенлен, при 120 градусах результат был хуже всего на 10%. Температура охлаждающей жидкости на выходе десять градусов, на входе на один градус меньше. Судя по таким результатам, вода, для охлаждения, не так уж необходима… Отключаем подачу воды, и ставим на охладитель большой радиатор. Результат предсказуем, напряжение снизилось до трёх вольт, ток до 0.5А. За пятнадцать минут радиатор нагрелся до 45 градусов. После того, как я снял прибор с конфорки, лампочка продолжала светить ещё минут десять, даже при разнице температур брусков всего в двадцать градусов, можно было различить накал спирали. Выводы этой лабораторной просты. При помощи элементов Пельтье можно добывать электричество в экспедиции, в турпоходе, на охотничьем зимовье, словом в любом месте, где это может понадобиться. Естественно, при наличии дров или яркого солнца, ну и обязательно смекалки. источник:Опыты с элементами Пельтье еще один самодельный термогенератор: http://overland-botsman.narod.ru/termogen.htm а вот и заводская модель Отопительная печь "Индигирка"Электрогенерирующая дровяная отопительно-варочная печь Получать жизненно необходимое электричество из тепла дровяной печи нам представилось более реальным. Ничего нового мы не изобретали. Просто адаптировали надежный тепловой электрогенератор к печи длительного горения. Много ли электричества можно вытянуть из бытовой печки? На пару лампочек Ильича хватит. Зарядить аккумуляторы ноутбука-мобильника-навигатора хватит. Включить телевизорчик-радиоприемничек-и-тому-подобное хватит. Затапливайте печку, грейтесь, варите суп-харчо, подключайте портативный телевизор и смотрите «Лебединое озеро». Пусть балерины используются только по прямому назначению. Такие вот печки-лампочки. Компания «Термофор» поставила на серийное производство новинку, аналоги которой ни в России, ни в остальном мире не замечены. Это небольшая твердотопливная отопительно-варочная печь со встроенным электрогенератором, который преобразует тепловую энергию горящего в печи топлива в электрическую энергию. Во время работы печи по прямому назначению, то есть в процессе отопления или приготовления пищи, печь генерирует постоянный ток напряжением 12 вольт и мощностью не менее 50 ватт. Много это или мало? Для пресыщенного комфортом городского жителя, наверное, мало. Для человека, по тем или иным причинам полностью отрезанного от внешнего мира и его благ — очень много. Зачастую эти спасительные 50 ватт могут стать гранью между жизнью и смертью. При современном уровне развития энергосберегающих технологий эта мощность обеспечивает весь необходимый для цивилизованной жизни набор электрических устройств. Напомним, что сегодня в мире из 6 миллиардов населения Земли более 1,6 миллиарда людей не имеют доступа к стационарным источникам электроэнергии. Из 21 миллиона дач в России около 5 миллионов либо вообще не подключены к электроснабжению, либо испытывают серьезные перебои с электроснабжением. В северных широтах получение электроэнергии из тепла печи имеет ряд выраженных преимуществ по сравнению с получением электроэнергии ветряками, солнечными батареями и дизельными генераторами. Легко представить реальные условия, где нет ни ветра, ни солнца, ни возможности доставки дизельного топлива. Вырабатываемого печью тока достаточно для подключения 2—3 энергосберегающих лампочек, зарядки аккумуляторов ноутбука, мобильного или спутникового телефона, фото- или видеокамеры, подключения портативного телевизора, радиоприемника, DVD проигрывателя и других портативных энергосберегающих устройств. По результатам лабораторных и полевых испытаний, электрогенератор печи выходит на стабильный режим через 6—8 минут после зажигания топлива в печи. Надежность электрогенераторов не вызывает сомнений, поскольку электрогенераторы компании «Криотерм» уже много лет поставляются сотням фирм-потребителей в 17 стран мира. Подобные электрогенераторы производства нашего партнера используются в оборонной промышленности многих стран, космосе, высокотехнологичных отраслях промышленности. В настоящее время компания «Термофор» изучает возможные рынки сбыта энергопечей. Очевидно, что разработка представляет интерес для военных, спасателей, геологов, туристов, дачников, рыбаков и охотников. Кроме того, целевым сегментом являются кочевые народы и народы севера. poselenie.ucoz.ru Для всех кто связан с загородной жизнью, будь то просто дача или полноценный коттедж, задумывался о том, как бы сделать свое жилье более автономным. Так что бы не зависеть от окружающих. Это вполне реально, но ключевым фактором, на котором все завязано, остается электричество. Если обеспечить свой дом водой и теплом дело не сложное, но электричество в домашних условиях се еще остается некоторой проблемой. Перебои с электричеством , достаточно распространенная проблема за пределами города. Когда все системы начинаю питаться от электричества, это влечет к повышению потребление электричества и как следствие к увеличениям счетов электроэнергии. Сегодня хочется поговорить на тему получения электричества в домашних условиях, дабы снизить счета оплаты и получить большую независимость. Для получения электричества в домашних условиях есть несколько общеизвестных способов: — с помощью бензинового , дизельного, газового генераторов (тепловая энергия)— с помощью ветряного генератора (энергия ветра)— с помощью солнечных батарей (энергия воды)— с помощью гидрогенератора (энергия воды)— аккумуляторные батареи (химическая энергия) Как можно заменить, уникальным способом добычи домашнего электричества являются солнечные батареи. Для всех остальных способов необходим генератор. Электрический генератор — это устройство, в котором неэлектрические виды энергии (механическая, химическая, тепловая) преобразуются в электрическую энергию. Как и любое механическое устройство, генератор и все связанные с ним узлы, требуют постоянного внимания. Помните о том, что ремонт электростанций это затратное удовольствие, поэтому до него лучше не доводить. Что бы свести поломки к минимуму, соблюдайте правила эксплуатации и технического обслуживания. Наиболее распространенный способ получения электричества в домашних условиях. Не нужно ничего изобретать. В магазинах уже давно продаются различные генераторы, работающие на популярных видах топлива. Суть работы любого генератора, который направлен на получение электричества, достаточно проста. Есть непосредственно электрический генератор, который приводится в движение двигателем внутреннего сгорания, который в свою очередь может работать на бензине, солярке (дизельном топливе) или газу. Пока еще, наиболее популярными и практичными для дома остаются бензиновые генераторы. Они достаточно мобильны и процесс доставки и хранения топлива не вызывает трудности. Для производственных нужд выгоднее дизельные генераторы. Последнее время газификация происходит повсеместно. Поэтому слали набирать популярность газовые генераторы.Генераторы различаются между собой мощностью и расходом топлива. В целом хороши и удобны.Минусы: Постоянная потребность в топливе. Высокий уровень шума работающего двигателя и загрязнение воздуха выхлопными газами.Плюсы: конечно же практичность и мобильность (возможность транспортировки). В народе их еще называют ветряки. Так же состоит из электрического генератора, но в движение этот генератор приводится за счет силы ветра, который улавливают лопасти пропеллера. Суть работы подсмотрена у наших дедов. Представляете себе ветряную мельницу. Современный ветряк работает точно так же. Для работы ветряного генератора нужна специальная постройка. Смысл в том, что необходимо поднять генератор с пропеллером повыше от земли, где сила ветра более высокая и постоянная. Сейчас эти технологии постоянно развиваются и улучшаются. Придумываются новые виды пропеллеров и создаются гибридные генераторы. Они позволяют получать электричество даже при самом малом ветре. Плюсы: Бесплатность. Затраты топлива нулевые. Энергию берется из воздуха. Экологичность. Ветряные генераторы не наносят никого вреда экологии и не загрязняют природу. Правда некоторые экологи утверждают, что смертность птиц, в районах где установлены ветровые электростанции намного выше.Минусов. Дороговизна сооружения. Потребность в открытых площадях и возвышенностях. Не стабильность. Зависимость от ветра, ведь бывают дни когда полный штиль. Уровень шума средний. В этом случае электрический генератор приводится в действие за счет течения воды. Что бы организовать добычу домашнего электричества с помощью гидрогенератора, необходима прежде всего река, на которой есть сужение. Раньше в таких местах на реках так же строили мельницы. Добыча электричества для дома с помощью гидрогенератора не сильно распространен, ввиду некоторой сложности конструкции и необходимости привязки к реке. Так же в зимнее время возможны перебои в работе, маленькие реки имеют свойство замерзать. Некоторые умельцы используют не только реки, но и сточные и сливные трубы. Устанавливают в них генератор или сооружают водяное колесо. Хороший способ добычи электричества для дома, правда требует некоторого капиталовложения для покупки панелей солнечных батарей, который потребуется немало. С каждым годом эти технологии развиваются и солнечные панели потихоньку снижаются в цене. Плюсы. Для производства электричества требуется солнечный свет. Не требует другого топлива. Производит электричество в любое время года. Экологически чистый. Без шумный.Минусы. Требует большие открытые площади. Не производит электричество ночью и в пасмурную погоду. Дороговизна и хрупкость панелей. Аккумуляторы дело хорошее. Но заряд электричества в них не вечен. При хорошем потреблении требуется постоянная подзарядка. Так же не вечен и электролит, который периодически требует замены. Аккумуляторы хороши в совокупности с теми способами получения электричества которые были уже перечислены. В этом случае можно организовать достаточно бесперебойную схему электропитания вашего дома. Недавно на даче увидел любопытную конструкцию. Представляла она собой колесо в котором бегают хомячки, только большого размера. В это колесо запускалась собака, которая там начинала бежать. Собака счастлива! А дальше это колесо через несколько ременных передач соединялась с электрическим генератором, который вырабатывал электричество, преобразуя так сказать энергию собаки в электричество. Занятная схема. Полностью обеспечить питание дома своей электроэнергией конечно сложно. Уж слишком много у нас прожорливых электроприборов: чайники, холодильники, телевизоры и компьютеры. Электроэнергии потребляют много, возможно что 100 процентов этой электроэнергии мы не сможем создать в домашних условиях. НО вот что действительно можно, так это получить хорошую экономию и снижение счетов оплаты потребления электричества. Какой из способов получения электричества дома выбрать, остается за вами. Возможно комбинация двух-трех это то что надо! www.litw.ruОсновные и нетрадиционные способы получения электроэнергии (стр. 1 из 7). Получение электричества
Как получить электричество из воды
Новая технология получения электричества из обычной воды
Как получить электричество из водорода
Шаг 1: Изготовьте электроды
Шаг 2: Соедините провода
Шаг 3: Закрепите электроды
Шаг 4: Подготовьте стакан
Шаг 5: Подсоедините вольтметр
Шаг 6: Подсоедините батарейку
Шаг 7: Отсоедините батарейку
Антарктида и нло
Что такое эмуляторы
Информационно-управляющая система Су-35С
Хождение по огню
Таяние Антарктиды
Остров Святой Елены
Самые большие деньги в мире
Общество Туле
Как обновить интерьер квартиры
Амазонка - самая длинная река в мире
Как получить электричество из ничего?
Получение электричества | Онлайн журнал электрика
Основные и нетрадиционные способы получения электроэнергии
Заключение………………………………………………………19
Литература……………………………………………………….21
2. Гидроэлектростанции.
Производство электроэнергии в России. Производство, передача и использование электроэнергии :: SYL.ru
Как получают электроэнергию
Основные виды электростанций
Использование атомной энергии
Что такое электрический генератор
Понятие трансформатора
Как используется электроэнергия
Как происходит передача электроэнергии
Единый энергокомплекс
Что такое ЛЭП
Немного истории
Знаменитый план ГОЭРЛО
Результаты плана
Развитие села
Получение электричества из разницы температур - термоэлектрический генератор своими руками. - Альтернативная энергия - Каталог статей
В результате работ российского академика А.Ф. Иоффе и его сотрудников, были синтезированы полупроводниковые сплавы, которые позволили применить этот эффект на практике и приступить к серийному выпуску термоэлектрических охлаждающих приборов для широкого применения в различных областях человеческой деятельности. Технические характеристики: Разработка проекта осуществлена компанией «Термофор» совместно с компанией «Криотерм» из Санкт-Петербурга. Макс. объемотапливаемого помещения, м3 50 Мощность, кВт 4 Масса, кг 38 Глубина, мм. 370 Ширина, мм. 500 Высота, мм. 620 Суммарная площадьповерхностей нагрева, кв. м 0.6 Объем камеры сгорания, л 41 Диаметр проема топочной дверцы, мм 178 Диаметр дымохода, мм. 80 Мин. высота дымохода, м. 3 Домашнее электричество. Электричество в домашний условиях, электрические генераторы | Полезные статьи, советы
Домашнее электричество
Электричество из тепловой энергии
Ветряные генераторы
Гидрогенератор
Солнечные батареи
Аккумуляторы
Креативный подход
Домашнее электричество. Оптимальная схема
Похожие статьи: