Современные тепловые сети имеют очень большую протяженность, и в условиях нашего климата, требуют больших усилий для поддержания их рабочего состояния. Поэтому повышение работоспособности тепловых сетей, а также их надежности, является актуальной проблемой. Одним из способов решения этой задачи стали компенсаторы для трубопроводов отопления. Такие приспособления применяются не только на магистральных трубах и распределительных сетях, но и внутри домовых тепловых (и не только) разводках. Краткое содержание статьи Конструктивно такие приспособления бывают следующих видов: Если сравнить данные виды элементов для сети отопления и водоснабжения с сильфонными компен-ом, то они имеют более важные недостатки. К ним относиться необходимость постоянного контроля протечек. Так же они плохо переносят угловые напряжения системы. Перечисленные недостатки дополняет достаточно трудный ремонт и большие финансовые затраты на обслуживание. Любой малоопытный мастер, логично поставит вопрос, зачем нужна установка этих механизмов в отопление и водоснабжение, если у них так много недостатков, нужна ли такая компенсация? Все дело в том, что сальниковые приспособления выделяются очень высокой компенсирующей способностью, и это становиться приоритетом при их выборе. Они представляют собой конструкцию из стали. В нее входят две обечайки различного объема. Одну обечайку вставили в другую и между ними установили специальную прокладку. Без нее невозможна герметизация сальникового устройства и перемещение двух деталей относительно одна другой. Давление на трубопроводе с таким элементом может подниматься до 2,5 МПа, а максимальная температура до + 300 градусов по Цельсию. Сальниковые компенс-ы в свою очередь подразделяются на односторонние и двухсторонние. Двухсторонний тип отличается тем, что состоят из трех основных деталей (двух внутренних и одной наружной). Уже было сказано, что эти устройства отличаются высокой возможностью компенсирования, и она увеличивается пропорционально увеличению объема сети. Важно! Сальниковый вид механизмов отлично выдерживает температурный режим, но их не разрешают применять в сеть, где проходит агрессивная химическая среда. Дело в том, что их набивка плохо противостоит такому влиянию. В таких условиях рекомендуют применение сильфонных или резиновых видов. К преимуществам в данном случае причисляют то, что П – образный компенсат. в системе отопления не так устойчив к циклическим смещениям, относительно начальной установки. Так же резиновые виды лучше переносят кратковременные осевые деформации (сжатия или растяжения). В сравнении с П-образными приспособлениями, резиновые устройствах лучше переносят внезапную остановку циркуляции и образование вакуума. После восстановления движения потока они продолжают функционировать. Эти механизмы можно устанавливать в конструкцию, перекачивающую агрессивную химическую среду. Так же они не меняют своих способностей при поднятии температуры до 200 градусов. Предпочтение к установке данного вида устройств, в отличие от П-образных приспособлений – это сеть с небольшим давлением, где возможны образования вакуума. Рабочий элемент в таких механизмах расположен между стальными фланцами, а внутренний слой – это обечайка из резины. Этот элемент, собственно говоря, несет защитную функцию внутри. Максимальное давление в системе отопления, которое выдерживают эти виды компенсирующих элементов, составляет 2,5 МПа. При изготовлении данных элементов особое внимание уделяется прочности основного материала. Обычно такой материал отличается высокой морозоустойчивостью и стойкостью к ультрафиолету.Изоляционное покрытие на таких элементах способно выдерживать высокий температурный режим и устойчиво к механическому повреждению теплосети. В дополнение к таким деталям ставят термозащитный кожух. Тканевые механизмы бывают следующих видов: устройства для работы с агрессивной химической средой; приспособления для установки в магистраль с высокой температурой; механизмы для работы в условиях низкотемпературного режима; многослойные устройства, имеющие внутреннюю изоляцию.Компенсаторы сильфонные для систем отопления ST-B, ST-BM, ST-B-R. Компенсаторы трубопроводов для отопления
Компенсаторы для трубопроводов отопления: их виды, назначение и установка
Виды компенсаторов
Данный тип механизмов обширно применяют в промышленности. Линзовые механизмы по ГОСТу бывают таких видов: осевой КЛО; угловой механизм; прямоугольный ПГВУ; круглые ПГВУ.
Линзовый компенс-р можно увидеть в котельных, на небольших участках магистрали полиэтиленовых и других магистралей, где не требуется высокая тепловая компенсация. Помимо этого, они встречаются на продувочных магистралях, и возле насосного оборудования.
Но, используя эти механизмы, необходимо учесть, что эти изделия не подлежат ремонту. В случае поломки (потере герметичности), их необходимо менять на новые.Так же таким приспособлениям понадобиться регулярная проверка и подтяжка болтов. Окрашивать такие виды компенсирующих механизмов не рекомендуют, по причине возможного повреждения поверхности.
Данный вид приспособлений выгоден тем, что его можно ставить на магистрали отопления и водоснабжения любой конфигурации. Но специалисты рекомендуют устанавливать его только после того, как компенсировать естественными вариантами не получается.
Установка компенсирующих систем весьма желательна на трубопроводах систем отопления и разводках горячего водоснабжения внутридомовых тепловых сетей частного дома.
Установка компенсаторов обязательна независимо от материала трубопровода;
Такие вставки практически идеально реагируют на удлинение или укорачивание трубы под воздействием температур значительно снижают вибрационные явления. Могут применяться с предварительным натяжением для увеличения амплитуды колебаний. Преимуществом таких механизмов является способность переносить повышенные нагрузки и компактность, существенно снижающая объем земляных работ;
При использовании таких приспособлений возникает необходимость постоянного контроля над их работой с периодической подтяжкой грундбуксы, что производится во время профилактических осмотров. Таким образом, возникает необходимость в устройстве смотровых колодцев, а также помещений в теплотрассе для обслуживания;
Конструктивно эти изделия изготавливаются из полулинз, изготовленных штамповкой из стального листа, сваренных по гребню. Бывают одно-, двух-, трех-, и четырех- линзовые компенсатор. Крепление к трубе производится сваркой или на фланцах. Размеры компенсаторов по диаметру трубы в диапазоне 100 – 2020 мм. Устанавливаются на закрепленных участках трубопровода для отопления. Выпускаются как угловые, так и прямые исполнения.
Такие же устройства квадратные и прямоугольные применятся для воздуховодов с высокой температурой;
Кроме основной функции гашения вибраций успешно работает при тепловых деформациях трубопроводов для отопления, а также в случае возникновения радиальных смещений и угловых деформаций.
Видео
Компенсатор изготавливается из резины специальных сортов с добавлением полипропиленового каучука. Применяется армирование синтетическими нитями, что увеличивает срок службы изделия.
Такой тип приспособлений наиболее распространен для применения на водопроводных системах, поскольку, при своей надежности и простоте, имеет самую низкую стоимость.
Компенсационные элементы для теплотрассы – это очень важные ее составные элементы. Не все имеют точное представление, под какой нагрузкой работает теплотрасса или трубопровод. А их функционирование находится под постоянным влиянием температуры и давления.
Высокая нагрузка от давления, гидроударов, температуры вызывает сжатие и удлинение материала, из которого произведена сеть. Все эти факторы приводят к деформационным изменениям и повреждениям системы. Если всего этого не учесть, и не поставить защитный элемент, то система быстро выйдет из строя.
Выбор специального механизма лучше сделать еще на этапе планирования системы, предварительно выполнив расчет возможной перегрузки системы теплоснабжения или водоснабжения. После этого можно устанавливать эластичную конструкцию, которая имеет способность компенсирования.
Применять детали для сглаживания нагрузок рекомендовано ко всем магистралям. При этом необходимо четко понимать, что безаварийная работа и надежность трубопровода отопления из стали или пластика напрямую зависит от правильно решенного вопроса компенсации.
Компенсационные механизмы в свою очередь так же изготовляют из различных материалов. Поэтому к выбору устройства для той или иной ситуации необходимо подойти со всей ответственностью, ведь только так можно продлить срок службы сети отопления или водоснабжения, а значит сэкономить на дорогостоящих ремонтах.
Композитные материалы и пластики все более активно входят в жизнь в части использования их на трубопроводах. Хотя коэффициент линейного теплового расширения пластиков заметно ниже, чем у металла, компенсировать тепловые деформации не менее важно. Вибрационные нагрузки для трубопроводов из таких материалов также крайне нежелательны.
Предохраняющее устройство, имеющее вид петли для трубопроводов из полипропилена представляется крайне простой конструкцией, что позволяет легко монтировать в отопительную сеть. Такие изделия широко применяются по назначению для трубопроводов всех видов.
Применяя такие предохранители, исключают негативное влияние гидроударов, а также резкого повышения температуры (системы отопления). Таким образом, их можно рассматривать как предохранительные устройства, обеспечивающие целостность системы отопления или горячего водоснабжения.
Устройства этого типа выполняют специфические, но крайне важные функции:
Видео
Применение таких предохранителей на трубах систем отопления значительно повышает срок их службы, увеличивает межремонтные периоды на теплотрассах.
Установка компенсаторов в настоящее время является обязательным мероприятием при строительстве тепловых сетей.
Установка компенсаторов на систему водоснабжения жилого дома должна быть произведена в соответствии с требованиями проектной документации. Способ его крепления – приваркой патрубков изделия к трубопроводу.
Установка компенсаторов производится при отсутствии давления, а также продуктов перекачки в трубопроводе. Необходимо контролировать соосность трубы с корпусом компенсатора, что позволит избежать возникновения радиальных нагрузок на систему при эксплуатации. Возникновение таких нагрузок чревато заеданием и поломкой подвижных частей устройства.
К работам по монтажу данных конструкций на трубопроводах систем отопления нужно приступать после закрепления его секции в неподвижных опорах и только на прямых участках. На вертикальных участках нужно избегать давления весом системы на компенсатор.
Кроме неподвижных, на трубопроводе нужно устанавливать скользящие опоры для предотвращения его деформации под нагрузкой при тепловом расширении.
Величина трения на этих узлах учитывается при расчете максимальной длины участка с компенсатором при проектировании. Если устанавливаются устройства в сильфонном исполнении, на этом участке нельзя применять опоры подвесного типа.
При проектировании неподвижных опор необходимо учесть следующее:
Видео
Установка предохраняющих конструкций допускается как на горизонтальных, так и на вертикальных участках трубопровода. При этом стрелка на корпусе изделия должна быть направлена по направлению тока теплоносителя, а на вертикальных участках – всегда вниз независимо от направления перемещения теплоносителя.
Компенсаторы не обслуживаются, при возникновении неисправности подлежат замене на новый.
Рынок этих изделий наполняется, как правило, за счет отечественных производителей. Их продукция характерна вполне сносным качеством, устойчивой работой. Резиновые вибрационные вставки успешно выпускает компания «Армартек», их продукция собственной разработки имеет небольшие размеры, удобна в монтаже.
Активно развивается производство сильфонных компенсаторов, которые представляются компаниями «Металкомп» и «Компенз» с довольно приличным качеством.
Видео
Однако охватить всю размерную и типовую гамму, востребованную на рынке, на сегодняшний день не удается. Поэтому ряд размеров компенсаторов приходится завозить из-за рубежа, что успешно делают компании «АНТ» и «Апель», закрывая нишу дефицита за счет импорта и одновременно производя собственную продукцию.
Различные конструкции компенсаторов для отопления, значительно увеличивают срок службы отопительных систем в целом, устраняя дополнительные нагрузки.
Затраты, понесенные при их приобретении и установке, с лихвой окупаются длительным сроком эксплуатации отопления. Успехов вам!
Записи по теме:Опубликовано: Декабрь 8, 2016 Загрузка...trubanet.ru
Компенсаторы тепловых сетей. В данной статье речь пойдет выборе и расчете компенсаторов тепловых сетей.
Для чего же нужны компенсаторы. Начнем с того, что при нагревании любой материал расширяется, а значит трубопроводы тепловых сетей удлиняются при повышении температуры теплоносителя проходящего в них. Для безаварийной работы тепловой сети используются компенсаторы, которые компенсируют удлинение трубопроводов при их сжатии и растяжении, во избежание защемления трубопроводов и их последующей разгерметизации.
Стоит отметить для возможности расширения и сжатия трубопроводов проектируются не только компенсаторы, но и система опор, которые, в свою очередь могут быть как "скользящими" так и "мертвыми".Как правило у нас, в России регулирование тепловой нагрузки качественное - то есть при изменении температуры окружающей среды, температура на выходе из источника теплоснабжения изменяется. За счет качественного регулирования подачи тепла - количество циклов расширения- сжатия трубопроводов увеличивается. Ресурс трубопроводов снижается, опасность защемления - возрастает. Количественное регулирование нагрузки заключается в следующем - температура на выходе из источника теплоснабжения постоянна. При необходимости изменения тепловой нагрузки - изменяется расход теплоносителя. В этом случае, металл трубопроводов тепловой сети работает в более легких условиях, циклов расширения- сжатия минимальное количество, тем самым увеличивается ресурс трубопроводов тепловой сети.Следовательно прежде чем выбирать компенсаторы, их характеристики и количество нужно определиться с величиной расширения трубопровода.
Формула 1:
δL=L1*a*(T2-T1)где
δL - величина удлинения трубопровода,
мL1 - длина прямого участка трубопровода (расстояние между неподвижными опорами),
мa - коэффициент линейного расширения (для железа равен 0,000012), м/град.
Т1 - максимальная температура трубопровода (принимается максимальная температура теплоносителя),
Т2 - минимальная температура трубопровода (можно принять минимальная температура окружающей среды), °С
Для примера рассмотрим решение элементарной задачи по определению величины удлинения трубопровода.
Задача 1. Определить на сколько увеличится длина прямого участка трубопровода длиной 150 метров, при условии что температура теплоносителя 150 °С, а температура окружающей среды в отопительный период -40 °С.
δL=L1*a*(T2-T1)=150*0,000012*(150-(-40))=150*0,000012*190=150*0,00228=0,342 метра
Ответ: на 0,342 метра увеличится длина трубопровода.
После определения величины удлинения, следует четко понимать когда нужен а когда не нужен компенсатор. Для однозначного ответа на данный вопрос нужно иметь четкую схему трубопровода, с ее линейными размерами и нанесенными на нее опорами. Следует четко понимать, изменение направления трубопровода способно компенсировать удлинения, другими словами поворот с габаритными размерами не менее размеров компенсатора, при правильной расстановке опор, способен компенсировать тоже удлинение,что и компенсатор.
И так, после того, как мы определии величину удлинения трубопровода можно переходить к подбору компенсаторов, необходимо знать, что каждый компенсатор имеет основную характеристику - это величину компенсации.Фактически выбор количества компенсаторов сводится к выбору типа и конструктивных особенностей компенсаторов.Для выбора типа компенсатора необходимо определить диаметр трубы тепловой сети исходя из пропускной способности труби необходимой мощности потребителя тепла.
Таблица 1. Соотношение П- образных компенсаторов изготовленных из отводов.
Таблица 2. Выбор количества П- образных компенсаторов из расчета их компенсирующей способности.
Задача 2 Определение количества и размеры компенсаторов.Для трубопровода диаметром Ду 100 с длиной прямого участка 150 метров, при условии что температура носителя 150 °С, а температура окружающей среды в отопительный период -40 °С определить количество компенсаторов .бL=0,342 м (см. Задача 1).По Таблице 1 и Таблице 2 определяемся с размерами п образных компенсаторов (с размерами 2х2 м может компенсировать 0,134 метра удлинения трубопровода) , нам нужно компенсировать 0,342 метра, следовательно Nкомп=бL/∂х=0,342/0,134=2,55 , округляем до ближайшего целого числа в сторону увеличения и того - требуется 3 компенсатора размерами 2х4 метра.
В настоящее время все большее распространение получают линзовые компенсаторы, они значительно компактнее п - образных, однако ряд ограничений не всегда позволяет их использование. Ресурс п- образного компенсатора, при условии что качество теплоносителя оставляет желать лучшего, значительно выше чем линзового. Нижняя часть линзового компенсатора как правило "забивается" шламом, что способствует развитию стояночной коррозии металла компенсатора.
teplo-energetika.ru
Установка компенсаторов на трубопроводах – необходимая мера, снижающая опасность аварий
Построенное здание только на первый взгляд представляется абсолютно статичным. Неприметные глазу подвижки в системах отопления и водоснабжения диктуют необходимость использовать для предотвращения аварийных ситуаций компенсаторы систем отопления.
Компенсатор для труб отопления предотвращает последствия изменения линейных размеров вертикального стояка. В многоквартирных домах компенсатор на стояке отопления и горячего водоснабжения устанавливается между двумя неподвижными опорами. Компенсаторы трубопроводов тепловых сетей в подвальных помещениях (на трубах, расположенных горизонтально) предохраняют от изгибов, разрывов отдельных участков трубопровода.
Компенсаторы сильфонные для систем отопления ST-B, ST-BM, ST-B-PL, ST-B-R рассчитаны на долговременные нагрузки растяжения-сжатия, то есть на весь срок службы всего трубопровода.
При транспортировке высокотемпературных жидкостей и горячих паров компенсатор трубный сглаживает не только последствия механических воздействий. Компенсатор для стальных труб необходим и в силу температурного расширения металла под воздействием горячей воды.
Для надёжной герметизации сочленения труб компенсаторы на трубопроводах горячей воды используются исключительно сильфонного типа. St b сильфонный компенсатор – выполненный из нержавеющей стали в несколько слоёв гофрированный цилиндр, монтируемый резьбовым способом или под приварку. Сильфонные компенсаторы трубопроводов
Компенсаторы сильфонные для систем отопления ST-B, ST-BM, ST-B-PL, ST-B-R
Устанавливая компенсатор для труб и своевременно производя его замену (по истечению срока предусмотренной эксплуатации) удаётся значительно сэкономить на ремонте системы отопления в целом.
Формируемая на рынке на компенсаторы для трубопроводов цена во многом складывается из наценок за транспортировку, хранение на складах. Приобретите необходимые для монтажа систем отопления металлоизделия по ценам производителя. При необходимости, как это показано на демонстрирующих компенсаторы для трубопроводов фото, конструкция комплектуется защитным кожухом.Преимущества заказа продукции от производителя – не только значительная экономия, скидки при оптовых закупках, но и специальная комплектация в соответствии с поставленными технологическими задачами.
Метки: компенсатор на стояке горячей воды, компенсаторы для систем отопления.
santermo.ru
Условный проход DN: от 15 до 200 мм | Стандартное исполнение |
Рабочее давление PN: 10, 16 кг/см2 (бар) | Материал ГОСТ: 08Х18Н10Т |
Рабочая температура Т: от -60 до 425 гр. С | Материал DIN: 1.4541 |
Специальное исполнение | Материал AISI: 321 |
Условный проход DN: от 15 до 500 мм | Специальное исполнение |
Рабочее давление PN: от 6 до 25 кг/см2 (бар) |
Материал ГОСТ: 08Х18Н10, 08Х16Н11М3, 08Х17Н13М2Т, 20Х20Н14С2 |
Рабочая температура Т: от - 80 до 600 гр. С | |
Осевой ход | Материал DIN: 1.4301, 1.4828, 1.4401, 1.4571 |
Стандартное исполнение: 50 (-25; +25) мм | Материал AISI: AISI 304, 309, 316, 316 ti |
Специальное исполнение: до 200 мм | Материал: патрубков, защитного кожуха |
Рабочая среда | Стандартное исполнение |
Вода, пар и другие не агрессивные среды | Материал ГОСТ: Ст. 20, Ст3сп, АД0 |
Количество рабочих циклов | Материал DIN: 1.0038, 3.0255 |
Стандартное исполнение | Материал AISI: St 37-2, AA1050 |
от 50 до 1 000 на полный рабочий ход | Специальное исполнение |
от 50 до 1 000 на полный рабочий ход |
Материал ГОСТ: 09Г2С, 08Х18Н10, 08Х16Н11М3, 08Х17Н13М2Т, 20Х20Н14С2 |
Специальное исполнение | |
до 5 000 на полный рабочий ход | Материал DIN: 1.4301, 1.4828, 1.4401, 1.4571 |
Область применения компенсаторов для отопления | Материал AISI: AISI 304, 309, 316, 316 ti, 321 |
- компенсация осевого перемещения - снятие вибрационных нагрузок |
- системы отопления зданий, теплотрассы - системы горячего водоснабжения зданий и другие промышленные объекты |
www.armfleks.ru
Правила по монтажу и установке компенсаторов.
1. Сильфонные, линзовые и сальниковые компенсаторы следует монтировать в собранном виде.2. Осевые сильфонные, линзовые и сальниковые компенсаторы следует устанавливать соосно с трубопроводами.
Допускаемые отклонения от проектного положения присоединительных патрубков компенсаторов при их установке и сварке должны быть не более указанных в технических условиях на изготовление и поставку компенсаторов.
3. При установке линзовых, волнистых и сальниковых компенсаторов, а также арматуры направление стрелки на их корпусе должно совпадать с направлением движения вещества в трубопроводе.
4. При монтаже сильфонных и линзовых компенсаторов следует исключить скручивающие нагрузки относительно продольной оси и провисание под действием собственной массы и массы примыкающих трубопроводов, а также обеспечить защиту гибкого элемента от механических повреждений и попадания искр при сварке.
5. Монтажная длина сильфонных, линзовых и сальниковых компенсаторов должна быть принята по рабочим чертежам с учетом поправки на температуру наружного воздуха при монтаже.
6. Для компенсации температурных деформаций трубопроводов при монтаже П-образные, сильфонные, линзовые и сальниковые компенсаторы должны устанавливаться с растяжением (сжатием) на указанную в проекте величину. Если температура воздуха в момент монтажа отличается от принятой в проекте, то величину растяжения (сжатия) компенсатора следует увеличить (если в проекте указано растяжение) или уменьшить (если указано сжатие) на значение (мм):
в=aL(tп+tм)
а- температурный коэффициент линейного расширения металла трубопровода,°С-1, принимаемый для углеродистых и низколегированных сталей 0,012 и высоколегированных - 0,017;L- расчетная длина участка трубопровода, м;tп - принятая в проекте температура воздуха в момент монтажа,°С;tм- фактическая температура воздуха в момент монтажа,°С.
7. При монтаже сальниковых компенсаторов должны быть обеспечены свободное перемещение подвижных частей и сохранность набивки.8. Монтаж односекционных осевых сильфонных, линзовых, сальниковых и П-образных компенсаторов с приспособлениями для растяжения производят в такой последовательности (черт.1,а):
Растяжение компенсаторов до монтажной длины следует производить с помощью приспособлений, предусмотренных конструкцией компенсатора или натяжными монтажными устройствами.
Черт.1. Последовательность операций (1-5) при монтаже компенсаторов:
а - П-образных, осевых сильфонных односекционных, линзовых и сальниковых с приспособлением для растяжки;б - то же без приспособления для растяжки;в - П-образного компенсатора при групповой прокладке.
а) компенсатор одной стороной присоединяется сваркой или на фланце к трубопроводу;б) участок трубопровода с присоединенным компенсатором устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре.
Примечание.
В зависимости от условий монтажа (например, для П-образных компенсаторов) могут производиться сначала установка трубопровода в направляющих и скользящих опорах и закрепление его в неподвижной опоре, а затем присоединение к этому участку компенсатора;
в) с помощью распорных приспособлений компенсатор подвергается растяжению на проектную величину. Допускается производить предварительную растяжку компенсатора до его присоединения к трубопроводу;
г) участок трубопровода с другой стороны, свободно лежащий в направляющих и скользящих опорах, подтягивается к свободному стыку компенсатора и присоединяется к нему сваркой или на фланце;
д) присоединяемый участок трубопровода закрепляется в другой неподвижной опоре;
е) с компенсатора снимается устройство для предварительной растяжки.
11. Монтаж осевых сильфонных компенсаторов без приспособления для растяжения производят в такой последовательности (см. черт.15,б):
а) участок трубопровода с одной стороны от компенсатора устанавливается в направляющих и скользящих опорах и закрепляется в неподвижной опоре;
б) участок трубопровода с другой стороны от компенсатора устанавливается так, чтобы расстояние между торцами участков трубопровода равнялось монтажной длине компенсатора, и закрепляется в другой неподвижной опоре. Монтажная длина компенсатора должна быть равна его строительной длине (компенсатор разгружен) плюс предварительное натяжение (сжатие)
в) компенсатор присоединяется к одному из участков трубопровода;
г) с помощью монтажных приспособлений компенсатор подвергается растяжке и присоединяется к другому участку трубопровода;
д) монтажные приспособления снимаются.
12. При групповом расположении П-образных компенсаторов (см. черт.15,в) параллельно прокладываемых трубопроводов растяжку компенсаторов следует производить натяжением трубопровода в холодном состоянии. В этом случае растяжку П-образного компенсатора следует выполнять после окончания монтажа трубопровода, контроля качества сварных стыков (кроме замыкающего, используемого для натяжения) и закрепления трубопровода в неподвижных опорах.
а) участки трубопровода и П-образный компенсатор устанавливают на опоры. В зазор, оставленный для натяжения стыка, вставляется деревянная проставка шириной, равной величине растяжения;
б) компенсатор с помощью сварки обеими сторонами присоединяется к соответствующим участкам трубопровода;
в) участок трубопровода закрепляется в неподвижных опорах;
г) проставка удаляется, осуществляется предварительное натяжение компенсатора, стык соединяется сваркой;
д) монтажные приспособления удаляются.
gkter71.ru