Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Пирометр (бесконтактный ИК-термометр) с "лазерной подсветкой цели" :). Лазерный пирометр


принцип действия. Лазерный дистанционный термометр (фото)

Измерение температуры может быть контактным и дистанционным. Наиболее распространены термопары, резисторные датчики и термометры, которые нуждаются в соприкосновении с объектом, т. к. измеряют свою собственную температуру. Делают они это медленно, но стоят недорого.

Бесконтактные датчики измеряют ИК-излучение объекта, дают быстрый результат, и обычно используются для определения температуры движущихся и нестационарных тел, находящихся в вакууме и недоступных по причине агрессивности среды, особенностей формы или угрозы безопасности. Цена таких устройств относительно высока, хотя в некоторых случаях сравнима с контактными приборами.

термометр лазерный бесконтактный

Монохромная термометрия

Монохромный способ определения суммарной энергетической яркости использует заданную длину волны. Реализации варьируются от ручных зондов с простым дистанционным измерением до сложных переносных устройств, позволяющих одновременно наблюдать объект и его температуру с занесением показаний в память прибора или их распечаткой. Стационарные датчики представлены как простыми небольшими детекторами с удалённым расположением электроники, так и высокопрочными устройствами с дистанционным PID-управлением. Волоконная оптика, лазерное прицеливание, водяное охлаждение, наличие дисплея и сканера – опциональные варианты мониторинга технологических процессов и систем управления.

Конфигурация, спектральная фильтрация, диапазон рабочих температур, оптика, время отклика и яркость объекта являются важными элементами, влияющими на производительность и должны быть тщательно рассмотрены в процессе отбора.

Датчик может быть как простым двухпроводным, так и сложным износоустойчивым высокочувствительным устройством.

Выбор спектрального отклика и диапазона рабочих температур связан с конкретными задачами измерения. Короткие длины волн предназначены для высоких температур и длинные – для низких. Если объекты прозрачны, например, пластмассы и стёкла, то необходима узковолновая фильтрация. Полоса поглощения CH полиэтиленовой плёнки равна 3,43 мкм. Выделение спектра в этом диапазоне упрощает вычисление коэффициента излучения. Точно так же стеклоподобные материалы становятся непрозрачными при длине волны 4,6 мкм, что позволяет точно определить температуру поверхности стекла. Область излучения 1-4 мкм даёт возможность производить замер через смотровые отверстия вакуумных и барокамер. Альтернативный вариант – использование волоконно-оптического кабеля.

Оптика и время отклика в большинстве случаев несущественны, так как поле зрения размером 3 см на расстоянии 50 см и время отклика менее 1 с является достаточным. Для небольшого или быстро перемещающегося прерывистого объекта возникает необходимость в небольшом (3 мм в диаметре) или ещё меньшем (0,75 мм) пятне измерений. Дальнее прицеливание (3-300 м) требует оптического регулирования, так как стандартное поле зрения прибора становится слишком большим. В некоторых случаях для этого используется метод двухволновой радиометрии. Оптоволокно позволяет дистанцировать электронику от агрессивных сред, устранить влияние помех и решить проблему доступа.

Лазерный термометр в основном имеет регулируемое в диапазоне 0,2-5,0 с время ответа. Быстрый отклик может повысить уровень шума сигнала, а медленный влияет на чувствительность. При индукционном нагреве необходима мгновенная реакция, а для конвейера – более медленный отклик.

Монохромная ИК-термометрия проста и используется в случаях, когда для создания высококачественной продукции контроль температуры крайне важен.

инфракрасный лазерный термометр

Двухволновая термометрия

Для более сложных задач, где абсолютная точность измерений имеет решающее значение, и где продукт подвергается физическому или химическому воздействию, применяется двух- и многоволновая радиотермометрия. Концепция появилась в начале 1950 годов, а последние изменения в конструкции и аппаратном обеспечении повысили её производительность и снизили себестоимость.

Метод заключается в измерении спектральной плотности энергии на двух различных длинах волн. Температура объекта может быть считана непосредственно из прибора, если излучательная способность одинакова для каждой длины волны. Показания будут верными, даже если поле зрения частично перекрыто относительно холодными материалами, такими как пыль, проволочные экраны, и серые полупрозрачные окна. Теория метода проста. Если энергетическая яркость обоих длин волн одинакова (для серого тела), то коэффициент излучения сокращается и отношение становится пропорциональным температуре.

Двухволновой лазерный термометр применяется в промышленности и научных исследованиях как простой, уникальный датчик, способный сократить ошибку измерения.

Кроме того, созданы многоволновые термометры для материалов, не являющимися серыми телами, коэффициент поглощения которых изменяется с длиной волны. В этих случаях необходим подробный анализ поверхностных характеристик материала в отношении взаимосвязи этого коэффициента, длины волны, температуры и химического состава поверхности. При наличии этих данных можно создать алгоритмы расчёта зависимости спектрального излучения на различных длинах волн от температуры.

лазерный дистанционный термометр

Правила оценки

Для оценки точности измерений пользователь должен знать следующее:

  • ИК-датчики по своей природе цвета не различают.
  • Если поверхность блестящая, то прибор установит не только испускаемую, но и отражённую энергию.
  • Если объект прозрачен, необходима ИК-фильтрация (например, стекло непрозрачно при 5 мкм).
  • В девяти из десяти случаев абсолютно точное измерение не требуется. Повторное снятие показаний и отсутствие смещения обеспечат необходимую точность. Когда энергетическая яркость изменяется и обработка данных затруднена, следует остановиться на двух- и многоволновой радиометрии.

Элементы конструкции

Термометр лазерный бесконтактный работает по принципу: ИК-энергия на входе в и сигнал на выходе. Базовая цепь устройства состоит из собирающей оптики, линз, спектральных фильтров, и детектора в качестве внешнего интерфейса. Динамическая обработка осуществляется по-разному, но её можно свести к усилению, термической стабилизации, линеаризации и преобразованию сигнала. Обычное оконное стекло используется при коротковолновом излучении, кварц для средних частот, и германий или сульфид цинка для диапазона 8-14 мкм, оптоволокно - при длинах волн 0,5-5,0 мкм.

Поле зрения

Лазерный дистанционный термометр характеризуется полем зрения (ПЗ) - размером пятна контроля температуры на заданном расстоянии. Изменение диаметра поля зрения прямо пропорционально изменению дистанции между термометром и объектом измерения. Его значение зависит от изготовителя и влияет на цену прибора. Существуют модели с ПЗ менее 1 мм для точечных измерений и с оптикой дальнего действия (7 см на удалении 9 м). Рабочее расстояние не влияет на точность показаний, если объект заполняет всё пятно измерения. При этом максимальная потеря сигнала не должна превышать 1%.

Прицеливание

Обычные ИК-термометры производят замеры без дополнительных приспособлений. Это допустимо для работы с объектами большого размера, например, бумажным полотном, где точечная точность не требуется. Для небольших или удалённых объектов используется луч лазера. Создано несколько вариантов лазерного прицеливания.

  1. Луч со смещением от оптической оси. Простейшая модель применяется в устройствах с низким разрешением для больших объектов, т. к. вблизи отклонение слишком большое.
  2. Коаксиальный луч. Не отклоняется от оптической оси. Центр измерительного пятна точно указывается на любом расстоянии.
  3. Двойной лазер. Диаметр пятна маркируется двумя точками, что избавляет от необходимости угадывать или рассчитывать диаметр и не ведёт к ошибкам.
  4. Круговой указатель со смещением. Показывает поле зрения, его размер и внешнюю границу.
  5. 3-точечный коаксиальный указатель. Луч разделяется на три яркие точки, расположенные на одной линии. Средняя точка обозначает центр пятна, а внешние отмечают его диаметр.

Прицеливание оказывает эффективную помощь при направлении термометра точно на объект измерения.

термометр фото

Фильтры

В термометрах используются коротковолновые фильтры для высокотемпературных измерений (> 500 °C) и длинноволновые фильтры для низких температур (-40 °С). Кремниевые детекторы, например, стойки к нагреванию, а небольшая длина волны снижает погрешность измерения. Другие селективные фильтры используются для пластиковой плёнки (3,43 мкм и 7,9 мкм), стекла (5,1 мкм) и пламени (3,8 мкм).

Датчики

Большинство датчиков либо фотоэлектрические, генерирующие напряжение при воздействии ИК-излучения, или фотопроводящие, т. е. изменяющие своё сопротивления под действием энергии источника. Они быстрые, высокочувствительные, обладают приемлемым температурным дрейфом, который может быть преодолён, например, термисторной схемой температурной компенсации, автоматической нуль-схемой, ограничением амплитуды и изотермической защитой.

В цепи ИК-термометра выходной сигнал детектора порядка 100-1000 мкВ подвергается тысячекратному усилению, регулируется, линеаризируется, и, в итоге, представляет собой линейный сигнал тока или напряжения. Его оптимальное значение 4-20 мА, что минимизирует внешние помехи. Этот сигнал может быть подан на порт RS-232 или на ПИД-регулятор, удалённый дисплей или записывающее устройство. Другие варианты использования сигнала:

  • включение/выключение сигнализации;
  • удержание пикового значения;
  • регулируемое время отклика;
  • в схеме выборки и хранения.

Быстродействие

Инфракрасный лазерный термометр в среднем обладает временем отклика порядка 300 мс, хотя при использовании кремниевых детекторов можно достичь значения 10 мс. Во многих инструментах время отклика изменяется для того, чтобы демпфировать входящий шум и регулировать их чувствительность. Не всегда необходимо минимальное время отклика. Например, при индукционном нагреве время должно быть в диапазоне 10-50 мс.

Характеристики лазерных термометров

Etekcity Lasergrip 630 – инфракрасный 2-лазерный термометр, цена $35,99. Характеристики:

  • диапазон температур -50 ... +580 °C;
  • точность +/- 2%;
  • отношение расстояния к размеру пятна 16:1;
  • излучательная способность 0,1 – 1,0;
  • время отклика <500 мс;
  • разрешение 1 °C.

лазерный термометр

Лазерный термометр (фото) также информирует о наибольшей, наименьшей и средней температуре. Измерительное пятно смещено на 2 см ниже точки прицеливания. Лазерное наведение наиболее точно в месте пересечения лучей (36 см).

Amprobe IR-710 – инфракрасный лазерный термометр, цена $49,95. Характеристики:

  • диапазон температур -50 ... +538 °C;
  • минимальный размер пятна 20 мм;
  • точность +/- 2%;
  • отношение расстояния к размеру пятна 12:1;
  • излучательная способность 0,95;
  • время отклика 500 мс;
  • разрешение 1 °C.

лазерный термометр цена

Данный лазерный термометр (фото), кроме текущей температуры, также индицирует её минимальное и максимальное значения.

fb.ru

Дешевый пирометр, сравнение с более дорогими моделями

Сталкиваясь по работе с замером температур на контактных площадках в электрических сетях, а так же в отопительных системах и имея в наличии 2 пирометра стоимостью в 10 и 20 раз превышающую данной модели, мне было интересно, как покажет себя не сильно дорогой пирометр из Китая. Кому интересно, прошу под кат! Заказ был оплачен 10 октября, на почте Китая посылка начала свое движение 23 октября. То ли продавец долго не отправлял, то ли завал на местной почте. Срок доставки стандартные 3 недели. Прибывшая посылка была гораздо меньше тех размеров, что я ожидал. Упаковка стандартная — желтый пакет. Внутри лежал упакованный в пупырку обозреваемый пирометр.
После вскрытия меня ожидал компактный пирометр. Почему компактный? Поймете ниже. А сейчас внешний вид. Технические характеристики, взятые со страницы продавца:

• Диапазон измерений: -50 °C ~ 550 °C (-58 °F ~ 1022 °F) • Точность: -50 °C ~ 0 °C (± 3 °C), 0 °C ~ 100 °C (± 1.5 °C), 100 °C ~ 550 °C (±1. 5%) • Время отклика: 500 мс • Коэффициент излучения: 0.95 фиксированный • Оптическое разрешение: 12:1 в точке фокуса • Спектральный диапазон: 8 ~ 14μm • Температура хранения:-20 °C ~ 60 °C (-4 °F ~ 140 °F) • Рабочая температура: 0 °C ~ 40 °C (32 °F ~ 104 °F) • Рабочая влажность: 10-95% RH, без конденсации, до 30 °C (86 °F) • DC 9В батарея

Внешне пирометр напоминает форму пистолета, с органами управления вместо курка На левой боковой грани нанесена наклейка с фирмой производителем, моделью, названием прибора и измеряемой температурой. Последняя имеет возможность производить замеры по Фаренгейту и Цельсию. На правой же, расположена информация об оптическом разрешении и потерях при дальности замеров Задняя часть включает в себя небольшой экран с подсветкой и 3 органа управления. Остановимся на каждом по-подробнее. Правая кнопка, символ лампочки, включает и отключает подсветку соответственно. Цвет подсветки белый Центральная, красная кнопка, переключение между температурными шкалами °C и F Левая кнопка позволяет включать и выключать лазер для замера Передняя часть представляет собой 2 окошка: лазерный целеуказатель сверху и окошко оптической системы снизу На нижней части рукоятки серийный номер и наклейка с какой-то информацией Изначально в комплект поставки батарея (крона 9В) не входит, поэтому покупаем качественный элемент питания Для установки батареи необходимо потянуть на себя черную часть рукоятки, для этого на обеих сторонах есть выемки под палец При открытии крышки становится доступно место для размещения батареи. Так же присутствует наклейка с указанием типа батареи, клемма и какая-то наклейка с иероглифами. После установки батареи закрываем крышку и делаем пробный запуск Хочется сразу отметить, что после установки батареи стали заметны зазоры между деталями корпуса, через которые проглядывается оная Теперь же хочется описать ощущения от использования данного пирометра, устройство очень приятное на ощупь, сборка плотная, не скрипит. Размер позволяет носить во внутреннем кармане куртки или небольшой сумочке. У продавца существует несколько моделей пирометра под маркировкой GM: НУ и то для чего все это затевалось! Сравнение с более дорогими моделями пирометров. По специфике работы приходится работать с данными устройствами, поэтому имею следующие модели: raytek raynger st и Optris MS. У них как и у обозреваемой модели фиксированный коэффициент излучения 0,95. Существуют дорогие версии пирометров где возможно изменять этот коэффициент. Характеризует он свойства поверхности объекта, температуру которого измеряет направленный на него пирометр. Обе модели имеют высокую стоимость, $220 за первую модель и €140 за вторую. Raytek raynger st уже довольно таки старенькая модель, сертификаты на него уже не делают. Производитель RAYTEK, США Оптическое разрешение у этой модели такое же, как и у обозреваемого устройства, 12:1. Органы управления скрыты в отсеке под батареей Имеет резьбу на основании рукоятки под установку на штатив Имел богатую комплектацию при покупке, пластиковый чемодан, куча документации, шнурок с карабином, чехол Optris MS. Производитель:OptrisGmbH, Германия. Выглядит как пульт от телевизора изогнутый на конце Оптическое разрешение больше чем у обозреваемой модели и raynger'а 20:1. Имеет разъем miniUSB для подключения к ПК На лицевой панели небольшой экран с органами управления, совпадающими по функционалу с обозреваемым пирометром Имеет зеленую подсветку экрана и отображение, при очереди замеров, максимальное и минимальное значение Так же есть резьба для установки на штатив и ушко для крепления шнурка на руку У 2-х моделей из 3-х имеется мушка и задний целик либо просто мушка. Optris MS не имеет ничего Хват так же у двух одинаковый, правда raynger st больше GM550 в 2 раза это точно, Optris снова выделяется своей формой Измерения приведу в доме, замер по стенке в квартире. С расстояния 15см. Слева направо: GM550 — 23.8°C, raynger st — 23,8°C, Optris MS — 23,5°C 50см, Слева направо: GM550 — 23.8°C, raynger st — 23,8°C, Optris MS — 23,7°C 100см, Слева направо: GM550 — 23°C, raynger st — 24,2°C, Optris MS — 22,9°C 150см, Слева направо: GM550 — 22,8°C, raynger st — 24,2°C, Optris MS — 22,9°C Если брать за эталонный пирометр от RAYTEK, то мы видим, что при увеличении расстояния до объекта он прибавляет 0,4°C и держит эту температуру. В то время как Optris MS изначально показал отличную от 2-х одинаковых температур и уменьшался при отдалении от точки замера. GM550 при удалении более чем на метр от точки замера, уменьшал температуру последней на 1°C. Но давайте не будем так категоричны, ведь по сравнению со стоимостью других $220 и €140 за его $17 можно простить такие недостатки. Но только если вам не нужен пирометр с погрешностью 0,1 градус. Мне для замеров нагрева контактов в электрических сетях погрешность GM550 не сыграет существенной роли. В конечном итоге выбор всегда за вами. Лично я доволен пирометром из Китая полностью.

обновление Продавец любезно согласился сделать скидку, конечная цена 15$ при указании в комментариях к заказу «sbazarov91»

mysku.ru

Лазерный пирометр и принцип его работы

пирометр

Существуют такие области современной промышленности, которые нуждаются в измерении температуры без контакта с объектом. Вот, к примеру, такое измерение необходимо в сталелитейной отрасли или же при проведении капитального ремонта газопроводов. Для того чтобы можно было провести бесконтактное измерение высоких температур или же во многих других опасных отраслях необходимо использовать устройство под названием лазерный пирометр. Большой выбор моделей такого пирометра предоставляет возможность выбрать самый подходящий для себя вариант устройства.

Лазерный пирометр в отличие от множества других существующих устройств для измерения температуры, имеет в самом устройстве специальный лазерный прицел, с помощью которого можно настроить луч на необходимый предмет и изменять температуру. Но, как и в других существующих случаях, устройство пирометра представляет собой определенный пирометрический образователь, который может качественно работать вместе с другими устройствами, отражающими информацию, к примеру, с аналоговым и лазерным исполнением.

пирометр

Но все же абсолютно все пирометры имеют одно общее предназначение – это измерение температуры объекта бесконтактным способом, и при этом нет необходимости очень близко подходить к объекту для точного измерения температурных данных. При этом необходимо обратить внимание на то, что поверхность таких объектов не должна быть отражающей, и в особенности важно, чтобы предмет не был совершенно прозрачным. Использовать лазерные пирометры рекомендуется исключительно так, где нет возможности подойти близко к предмету, к примеру, к нему нельзя добраться в целях безопасности человека, а также невозможно напрямую измерять температуру с помощью установленных датчиков по каким-то другим причинам.

В самую первую очередь к сферам применения данного оборудования необходимо отнести промышленность, строительство, проведение разнообразных научных исследований, транспорт и многое другое. Но в последнее время очень часто пирометры стали использоваться и в быту. Вот, к примеру, с их помощью можно измерять температуру готового блюда, температуру тела человека или же посуды. То есть, как видно, сфер использования лазерного пирометра есть очень много, и обосновывается такая популярность прекрасными техническими характеристиками, возможностям и просто удобством в использовании.

ribalych.ru

Пирометр (бесконтактный ИК-термометр) с "лазерной подсветкой цели" :)

Опишу недавно приехавший с Gamesalor бесконтактный термометр с лазерным указанием точки измерений.

Цели данного обзора: — освежить в памяти этот класс весьма полезных устройств; — пройтись инфракрасным излучением по реперным точкам шкалы Цельсия; — привести небольшое сравнение с контактным термометром; — а так же, рассказать некоторые хитрости проведения измерений.

Обзор этого термометра уже был, весьма подробный с технической стороны, но лишённый изюминки в плане метрологии и сравнения с другими термометрами.

По поводу разницы в ценах: нижняя цена возможна при трюке в вишлистом (добавляем в вишлист, потом оттуда в корзину), верхняя — если сразу с витрины в корзину.

Освежим в памятиПринцип действия прибора очень прост: фотодатчик прибора принимает инфракрасное излучение определённого спектра, отражаемое или излучаемое предметом на который направлен прибор. Вопреки расхожему мнению — сам прибор ничего не излучает. Проверить это, кстати, очень просто — достаточно всего лишь направить прибор в сторону объектива мобильного телефона. Ввиду удешевления конструкции фотоаппараты мобильных телефонов не имеют ИК-фильтра. Пользуясь этой особенностью многие таким образом проверяют ИК-пульты от бытовой техники. Все те кто говорит обратное — либо не понимают принцип работы, либо невнимательно читали инструкцию. В инструкции сказано "не направлять лазерный целеуказатель в глаза".Оптическое разрешение (или показатель визирования, или угол раскрыва приёмника) — это те самые цифры 12:1 (или угол раскрыва около пяти градусов) которые указаны на корпусе прибора. Эти цифры, кроме того что говорят о том какое «пятно» будет захвачено в область измерения, ещё и являются показателем области применения прибора. Т.е. если я захочу померить температуру объекта, скажем с 5 метров, то этим объектом должна быть доменная печь или, по меньшей мере, печка-буржуйка, т.к. диаметр «пятна» будет 41.6см. Т.е. это прибор для измерений «малой дальности». Кстати, насчёт того что написано на корпусе у меня какое-то неоднозначное ощущение: с одной стороны — это такое же как у автора предыдущего обзора — на полутора метрах диаметр пятна 13.2см. С другой стороны 150см/12=12.5см, т.е. не совпадает (хотя средняя цифра совпадает, но почему ж такая нелинейность тогда?). С третьей стороны 60"*2.54см = 152.4см (т.е примерно как раз полтора метра). Не знаю что имели ввиду китайцы — остаётся только гадать :))

Едем далее — реперные точкиНоль градусов. Плошка с водой и льдом. Когда в «пятно» попадает лёд — температура минусовая, если разогнать ледышки и направить на воду — получаем почти ноль.

Температура кипения. На самой воде температура ниже, ввиду того что в «пятно» попадает пар, уже успевший немного остыть. Поэтому, обмеряю стенку кружки, предварительно дав воде покипеть около 5 минут.

Как видно — нет разницы куда направлен термометр — на эмалированую стенку кружки или на тёмный рисунок.

Но не всё так гладко. Существует такое понятие как «коэффициент излучения», он же степень черноты (относительно «абсолютно чёрного тела»). Некоторые предметы этим термометром нельзя корректно «обмерить». Например кипящий и свистящий чайник из полированной нержавейки показывает всего 70-80 градусов. Поэтому, такие предметы нужно «обмерять», например, на ручке (разумеется, если она из другого материала). Получить разумную температуру на этом чайнике я смог только сняв свисток и направив измеритель внутрь — внутри чайника, из-за того что носик очень узкий (в отличие от кружки с широким «горлом») — пар просто не успевал остыть и температура получалась «правильной» — в диапазоне 99-101 градус.

Сравнение будет небольшое. Ноль градусов в миске со льдом я элементарно не успел измерить, т.к. лёд растаял, а ещё порции уже не было. С остатками льда контактный термометр-щуп показал 1.1 градус Цельсия. Температуру кипения щуп показал 101.0 градус. Дна и стенок я не касался.

Возможно, 1 градус в плюс — это как раз и есть его погрешность.

Выводы Считаю что бесконтактный термометр более точен (со своими оговорками) чем контактные китайские. И обеспечивает большую точность нежели заявленные плюс-минус два градуса или два процента (с оговоркой на блестящие, полированные и бликующие поверхности).

mysku.ru

Инфракрасный бесконтактный пирометр GM320

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, о неплохом бюджетном пирометре Benetech GM320. Данный прибор предназначен для бесконтактного измерения температуры в диапазоне от -50 до +380°С, имеет лазерный целеуказатель для более точного позиционирования. На муське уже есть пара обзоров этого замечательного устройства, но я постараюсь добавить что-нибудь свое. Если заинтересовал – прошу под кат. Приехал пирометр в стандартном пакете, оклеенный изнутри пупыркой: Упаковка совсем хилая, края немного помялись, но сам прибор не пострадал: К сожалению, в упаковке не было батареек. Скорее всего, это связано с запретом перевозки аккумуляторов, хотя сам запрет относится преимущественно к литию. Но, думаю, вскрывать и разбираться, какие там элементы питания, никому не охото, поэтому магазин перестраховался и убрал их из упаковки. На картонке есть основные спецификации прибора, все на китайском языке: Внутри упаковки есть инструкция и, скорее всего, гарантийный талон, правда все написано на китайском. Английского, а тем более и русского языка, там нет: Внешний вид прибора: На корпусе прибора имеются основные спецификации:ТТХ: — Производитель — BENETECH — Наименование модели – GM320 — Диапазон измерения: -50 ~ +380°С (-58 ~ 716°F) — Точность измерения (погрешность): ±1,5°С (±1,5%) — Разрешение — 0.1°C (0.1°F) — Показатель визирования (отношение диаметра пятна визирования к расстоянию между пирометром и объектом) — 12:1 — Коэффициент эмиссии — 0,95 (фиксированный) — Представление температуры – градусы (°С) и фаренгейты (°F) — Отображение – 1,2” монохромный дисплей — Встроенная подсветка – да, отключаемая — Память настроек — да — Автовыключение – да (7 секунд) — Позиционирование (наведение) – лазерный целеуказатель (красная точка) — Быстродействие – менее одной секунды (500мс) — Питание – 2 элемента ААА/10440 (мизинчики) по 1,5V (либо аккумуляторы) — Размеры – 150мм*90мм — Вес – 100гр (без аккумуляторов)

Для установки/замены элементов питания необходимо потянуть верх пластиковую накладку ручки. По началу, открываться будет туго, но потом разработается. Как уже упоминал в ТТХ, питается прибор от двух пальчиковых батареек (1,5V)/аккумуляторов (1,2V) формата ААА (мизинчики). На точность тип элементов никак не влияет. Прибор довольно компактный, имеет удобную рукоятку. Ничего нигде не скрипит, не люфтит. Вес прибора небольшой, всего 100гр (с элементами питания около 124гр), что позволяет использовать его на производстве (карман не оттягивает и имеет небольшие размеры): Размеры небольшие, всего (150мм*90мм):Управление:

Управление довольно простое. Всего имеется 3 небольшие кнопки, дисплей и кнопка в виде спускового крючка. При нажатии на спусковой крючек на дисплее сразу же отображается температура объекта в режиме реального времени, на дисплее при этом горит индикатор «SCAN». Дисплей имеет неплохие углы обзора, все показания и функций отображаются на нем: Интервал обновления – полсекунды. При отпускании спускового крючка раздается негромкий сигнал (пип-пип) и последние показания удерживаются на дисплее. При этом горит индикатор «HOLD». Крайняя правая кнопка (3) служит для включения/отключения подсветки. Днем/в освещенном помещении подсветка, в принципе, не нужна, но вечером/в неосвещенном помещении она просто необходима. При включении подсветки, на дисплее загорается значок светящейся лампочки. Крайняя левая кнопка (1) служит для включения/отключения лазерного целеуказателя. Сам лазер включается только при нажатии спускового крючка, если эта функция активирована кнопкой. При этом на экране горит значок лазерного излучения (треугольник с точкой в центре). Средняя/нижняя кнопка (2) – переключение отображаемой температуры в градусах/фаренгейтах. Градусы Фаренгейта широко использовались во всех англоязычных странах до 1960-х годов, после перехода к метрической системе потеряли свою актуальность, но до сих пор распространены в США и Канаде. Кнопки выключения нет, прибор автоматически выключается после 7 секунд простоя. Очень полезная функция прибора – память настроек, т.е. при включении он «вспоминает» параметры настроек. Если до автовыключения прибора была включена подсветка экрана или лазерный целеуказатель, то при следующем включении они также будут включены. Это очень удобная функция. Примеры работы (удержание/замер/без подсветки): Лазерный целеуказатель самый простой, маломощный, около 5мВт. Световое пятно средних размеров. Хоть мощность данного лазера и самая маленькая, ни в коем случае не направляйте его в глаза! В качестве целеуказателя стоит такой простенький лазер на 5 мВт: Яркость пятна отличная, бьёт далеко (можно использовать в качестве лазерной указки): Органы измерения/наведения крупным планом (лазер вкл/выкл):Принцип работы: Принцип действия инфракрасного пирометра основан на измерении абсолютного значения излучаемой энергии одной волны в инфракрасном спектре и выводе показаний в наглядном виде. Некоторые непонятные термины (взято отсюдова) — Оптическое разрешение (другое название — показатель визирования) – это отношение диаметра светового пятна и расстояния до объекта измерения. В технической документации к пирометру обычно указывается конкретное значение показателя визирования или приводится диаграмма направленности: Чем больше величина оптического разрешения (S/D, хотя иногда используют обратную величину D/S), тем более мелкие предметы может различать пирометр. Точность измерения не зависит от расстояния до объекта до тех пор, пока диаметр измеряемого пятна меньше размера объекта. Если же диаметр пятна становится больше, прибор начинает принимать излучение от других объектов, и это оказывает значительное влияние на результаты измерения. На рисунке выше приведены различные варианты расположения пятна визирования: 1) правильное — в этом случае точность определяется исключительно характеристиками прибора и не зависит от расстояния; 2) критическое — диаметр пятна равен размеру поверхности объекта, возможно увеличение погрешности измерения; 3) закритическое — точность измерения значительно падает, измерения проводить не рекомендуется. — Коэффициент излучения или коэффициент эмиссии — способность материала отражать падающее излучение. Этот показатель определяется как отношение энергии, излучаемой данной поверхностью при определенной температуре к энергии излучения абсолютно чёрного тела при той же температуре. В данном приборе он фиксирован (0,95), т.е. «заточен» для измерения температуры с темных матовых поверхностей. Только тогда он выдает заявленную точность. Некоторые коэффициенты излучения:Фото замеров: Сравнение с тремя разными электронными термометрами (спиртового/ртутного, к сожалению, нет): Как видим, погрешность около одного градуса, в пределах нормы (сделаем поправку на коэффициент эмиссии, т.к. датчик блестящий). Ну и традиционный тест кипящей воды (физику не обманешь, вода кипит при 100°С): Мой Convoy S2+ на 2,1А в максимальном режиме, спустя 1/3/5/10 минут после включения (домашняя температура — 20°С, перед тестом включал, не успел остыть): Хоть резьба головы/трубки (корпуса) и промазаны термопастой, тепло передается не так эффективно (вот и первое применение прибора нашлось): Подводя итог, можно сказать, что точность неплохая, для дома этого достаточно.

Возможное домашнее применение (мысли вслух): — как-то давненько я увлекался разгоном компьютера, был у меня самый «разгоняемый» проц Athlon XP торик 1700+ (в те времена еще только входили в моду ПК, двухъядерные процессоры были редкость, ну и средненькая конфигурация стоила недешево, поэтому выгодно было купить «урезанную» версию и разблокировать/разогнать ее до топовой). Гнался мой камень до уровня чуть меньше топовых, где-то до 2600+ с небольшим повышением напряжения, при этом неплохо грелся. Водянка была дорогой экзотикой, качественных кулеров практически не было (в единственном магазине моего города были самые убогие кулеры по конским ценам), поэтому приходилось «прикручивать» что попало, лишь бы железо не перегревалось. Можно было купить конфигурацию чуть помощней, но это выходило заметно дороже. Лучшим вариантом было разогнать базовое железо, а на сэкономленные деньги докупить, к примеру, оперативку и при этом получить еще большую производительность (тогда все «гнали» по шине, одновременно гналась и память). Дак вот, прежде чем собирать системник, нужно было протестировать машину, прогнать тестами и выяснить, есть ли перегрев, тупо щупая все элементы (если с радиаторами все просто, то с силовыми мосфетами и микросхемами памяти обстояло все сложнее). Тогда это приходилось делать руками, некоторые узлы сверяя с термодатчиками (в некоторых моделях их еще не встраивали в кристалл, они находились под процессором, а на северном/южном мосте их и в помине не было). А это могло привести в печальным последствиям, вплоть до выхода из строя комплектующих. Был бы у меня тогда данный прибор, все было бы намного проще. — тестирование различных самоделок на предмет локальных перегревов и их доработка (например, можно точно выяснить, что именно греется в Опусе) — измерение температурного режима электронных компонентов, находящихся под напряжением (популярные БП для светодиодов/ламп или самоделок, на радиаторах присутствует опасное напряжение) — для контроля приготовления пищи (выпечки, например) — совсем спорное применение – контроль температуры воды в чайнике. Я не могу пить кипяток, а холодной воды в кувшине, чтобы разбавить чай, иногда не бывает. По звуку нагрева чайника точно температуру не определишь, а тут жмак – вода нагрета, можно наливать, :-) — использовать в качестве лазерной указки — просто поиграться

Профессиональное применение: — сервис центры по ремонту электроники (можно легко выявить очаги перегрева в различной электронике) — измерение температуры у элементов, работающих под напряжением (нагрев контактов, токоведущих жил, электрической обмотки, радиаторов охлаждения и т.д.) — измерение температуры у элементов, работающих при высокой температуре (оборудование котлов, к примеру) — измерение температуры движущихся элементов (подшипники, втулки, трущиеся детали машин и т.д. — измерение температуры в труднодоступных местах

Плюсы: + приличная точность + бесконтактный способ измерения + довольно низкая стоимость + хорошее качество изготовления + встроенный целеуказатель

Минусы: — низкая точность измерения температуры у блестящих поверхностей — небольшой диапазон измерения

Вывод: отличное устройство за небольшую стоимость. Тем, кто часто что-нибудь конструирует/ремонтирует по электрике, данный прибор станет отличным помощником. Рекомендуется к покупке…

Кисуля:

Кому интересно, еще обзоры:

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

Виды пирометров: Стационарный, Медицинский, Радиационный, Лазерный

Содержание страницы

Для измерения температур бесконтактным способом был разработан специальный прибор — пирометр, который часто именую как инфракрасный термометр. Принцип преобразования ИК- излучения от объекта положен в основу работы пирометром. В нынешнее время каждый желающий может купить этот прибор для личного пользования.

Стационарный пирометр

stac1Был специально разработан, для массового применения в сфере промышленности. Прибор располагает широким выбором спектральных и температурных диапазонов, благодаря чему осуществляется охват практически полнейшего спектра задач температурного контроля всех технологических процессов на предприятии. Стационарные пирометры применяются в областях пищевой промышленности, транспорта, металлургии, огнеупорной промышленности, химической промышленности, машиностроения и строительной промышленности.

Медицинский пирометр

med1Для бесконтактного измерения температуры тела. Так же, с помощью данного прибора можно осуществлять измерение температуры жидкостей, выполнять массовое измерение температуры в коллективах, школах или больницах. Результат выводится на дисплей уже через 1-3 секунды. Прибор может воспроизводить результаты с клинической точностью в 0,18°С.

Радиационные пирометры

rad1Основываются на тепловом действии лучей, еще называются ардометрами. Радиационные пирометры могут применяться для измерения температуры от 900 до 1800°С, некоторые модели могут измерять температуру и в 2000°С. Принцип действия оборудования заключается в том, что поток теплового излучения, который исходит от раскаленного тела, улавливается и уже фокусируется на тепловой части пирометра, которая соединена с термопарой.

Лазерный пирометр

laz1Достаточно широко применяется в промышленности, в энергетике, сфере ЖКХ, в быту, на предприятиях.Более детально о лазерных пирометрах можно почитать в этой статье.В основном, действие пирометров базируется на бесконтактном измерении, но существуют модели, которые могут использоваться как пирометр контактный и бесконтактный. Контактную модель часто называют комбинированным типом, которая способна измерять мощность теплового излучения объекта преимущественно в диапазонах ИК- излучения.Благодаря стремительному развитию технического прогресса, можно купить прибор самых различных производителей.

Известными производителями считаются Testo, Optris и Raytek.

Пирометр Testo применяется для измерения температуры на поверхностях различных объектов посредством бесконтактного способа. Прибор применяется для осуществления контроля высокотемпературных производственных процессов дистанционным способом. Данное устройство находит свое применение в быту, жилищно- коммунальной сфере и при научных исследованиях.Следующий представитель — пирометр Оptris производится немецкой компанией и представляет собой высококачественный и инновационный прибор для бесконтактного измерения температуры. Он является достаточно компактным, портативным ручным изобретением, которое применяется в автосервисах, коммунальных хозяйствах и промышленности. Приборы получили широкое распространение благодаря набору функций, точности и высокому качеству за относительно невысокую стоимость.Инфракрасный пирометр Raytek способен измерять высокую температуру в диапазоне от – 50°С до + 3000°С. Применяется данное устройство абсолютно во всех отраслях промышленности. Благодаря большим техническим возможностям пирометра осуществляется своевременная техническая диагностика производственных процессов и оборудования, профилактика аварий на производстве.

echome.ru

Пирометр с лазерным "наведением" и подсветкой

В этом обзоре я бы хотел рассказать про довольно интересный пирометр, который можно использовать в медицинских целях, так как он имеет возможность калибровки и довольно точен в этом режиме. Но и не будет лежать на полке когда все здоровы, так как может измерять температуру 0- 90 ℃ при переключении режима.

18.* — Товар предоставлен магазином…

✔ ХАРАКТЕРИСТИКИ

Диапазон измерений: от 32℃ до 43℃ ( 0℃ — 90℃ ) Точность измерений: ±0,3℃ Время измерения: 1 секунда Память: 32 измерения Длина волны лазерного луча: 630 ÷ 670 nm Мощность лазерного луча: Рекомендуемая дистанция измерения: от 5 до 15 см Питание: батарея 9V типа «крона» Автоматическое отключение через 10 секунд

✔ УПАКОВКА И КОМПЛЕКТАЦИЯ

Прибыл данный термометр вместе с лампой из прошлого обзора, в большой картонной коробке. Хотя даже в такой упаковке угол чуть-чуть побился. На задней части картонной упаковки характеристики и спецификация пирометра.

Общая комплектация, инструкция, батарейка 9 В типа «Крона» и пирометр в плотном чехле из кожи молодого дерматина.

Инструкция на плотной полиграфии, на английском языке.

Не поскупились китайцы и на батарейку, так что прямо из коробки, пирометр готов к работе.

Наличие чехла — это плюс прибору. Как мне показалось чехол состоит из трех слоев, верхний дерматиновый, внутри тонкий поролон и внутренняя часть синтетическая. Есть «ухо» для крепления на пояс. Чем-то похож на кобуру =)

Ответная часть липучки занимает примерно 1/3 клапана.

✔ ПИРОМЕТР

Сам пирометр выполнен довольно качественно, не скрипит, руки не режет. На верхней части наклейки с информацией о точности и дистанции измерения.

mysku.me