История создания люминесцентной лампы. Люминесцентная лампа история
История создания люминесцентной лампы
История люминесцентной лампы достаточно объемна как по времени, так и по количеству сопутствующих изобретений. До того момента, как в частных домах и офисах появились первые лампы дневного света в том виде, который мы наблюдаем и по сей день, ученым и инженерам пришлось изобрести вакуумную трубку, поэкспериментировать с различными инертными газами, создать долговечные электроды и разработать состав флуоресцентного покрытия.
Первой в 1856 году на свет появилась вакуумная стеклянная трубка. Этому изобретению мы обязаны немецкому стеклодуву и изобретателю Генриху Гейслеру. Именно он создал вакуумный насос, позволявший откачивать из закрытой колбы воздух. Стеклянная вакуумная колба в последствие получила имя изобретателя – трубка Гейслера. Когда ученый, а затем и его последователи пропускали через трубку электрический ток,наблюдалсядостаточно интересный эффект – яркое свечение зеленоватого оттенка.
Основательные эксперименты с явлением электролюминесценции различных веществ проводил Александр Эдмон Беккерель. Именно он в 1859 году предложил покрыть трубку Гейслера тонким слоем люминесцирующих веществ. И хотя трубки ученого излучали недостаточно сильный свет и были недолговечны, именно он впервые заставил люминофор светиться под воздействием электрического тока. Хотя по большому счету Беккерель и не собирался практически использовать свои достижения – у него был чисто научный интерес в этой и других областях науки.
Первое практическое применение трубки Гейслера попытался осуществить Томас Эдисон. Именно он в 1896 году изобрел, а 1907 году запатентовал колбу с покрытием из вольфрамата кальция и рентгеновским излучением как люминесцентную лампу. Но и этому изобретению не удалось стать искусственным источником света в наших домах. Лампа имела малый срок службы, а Эдисон, добившись успеха с лампой накаливания, отказался от дальнейших изысканий по совершенствованию люминесцентной лампы.
Впервые практически использовать аналог сегодняшней лампы дневного света и изыскать из этого коммерческий интерес удалось Даниэлю Фарлану Муру. Первую модель своей лампы оно показал общественности в 1895 году (на год раньше Эдисона). В качестве инертного газа в колбе он использовал двуокись углерода (для белого свечения) или азот (для розового). Его лампа была невероятно сложна в конструкции, но уже тогда инженеры заметили ее большую эффективность по сравнению с разрабатываемой лампой накаливания. Почти 9 лет усовершенствований и испытаний привели к тому, что начиная с 1904 года, система освещения Мура стала устанавливаться в магазинах и офисных помещениях.
Использовать в люминесцентной лампе пары ртути впервые предложил Питер Купер Хьюитт в 1901 году. Его лампы были намного эффективнее, как ламп Мура, так и ламп накаливания. Однако сине-зеленый свет свечения ограничил их применение в то время. Хотя в последствие, много лет спустя, именно ртутные лампы стали основой уличного освещения, именно ими оснащались фонарные столбы.
Лишь в 1927 году свет увидела люминесцентная лампа – аналог той, что мы используем сейчас. И хотя ее изобретатель Эдмунд Джермер изначально ставил перед собой цель создать управляемый источник ультрафиолетового света – получилось так, что вместе с коллегами Фридрихом Мейером и Гансом Шпаннером он создал второй по популярности источник искусственного света, причем более близкий к естественному, чем популярная в то время лампа накаливания. Исследователи просто покрыли ультрафиолетовую лампу слоем люминофора, и оказалось, что она способна излучать естественный белый и достаточно яркий свет.
В 1934 году патент на изобретения выкупила General Electric (британская, а не американская), за достаточно кругленькую по тем временам сумму в 180 тыс. $. Первые продажи люминесцентных ламп начались лишь в 1938 году, так как на протяжении 4 лет до этого исследовательские бюро компании усиленно изобретали неразрушающийся под действием электрического тока электрод, а сама фирма выкупала патенты, на изобретения, хоть как-то относящиеся к этому виду лампы.
< Предыдущая
Следующая >
scsiexplorer.com.ua
Лампы люминесцентные - немного истории
Лампы люминесцентные многие считают такой же классикой освещения, как и лампы накаливания. С этим тяжело спорить, учитывая, что первая люминесцентная лампа была выпущена аж в 1938 году. В СССР такие лампы были разработаны в 1951 году. А первая газоразрядная лампа — предок современных люминесцентных ламп — была изобретена в 1956 году.
По сравнению с лампами накаливания линейные люминесцентные лампы дневного света являются более экономичными (примерно в 5 раз) и имеют больший срок службы (в 5-10 раз).
История возникновения
Изобретателем люминесцентной лампы (лампы дневного света) считается Эдмунд Гермер. Он и его команда в 1926 году получили бело-цветной свет от газоразрядной лампы, колба которой внутри была покрыта флуоресцентным порошком. Позже корпорация General Electric купила патент у Гермера и в 1938 году довела лампы дневного света до широкого коммерческого использования. Свет первых ламп напоминал естественный уличный свет в пасмурный день (примерно 6400К): считается, что именно тогда и появилось название «лампа дневного света».
В Советском Союзе массовое производство люминесцентных ламп началось только в 1948 году. За это в 1951 году разработчики первой советской лампы дневного света стали лауреатами Сталинской премии второй степени.
Советский ГОСТ 6825-64 определял только три типоразмера линейных люминесцентных ламп мощностью 20, 40 и 80 ватт (длиной 600, 1200 и 1500 мм соответственно). Колба имела большой диаметр 38 мм для более легкого зажигания при низких температурах.
Люминесцентные линейные лампы дневного света выпускаются многих видов. Разной мощности, длины, с разными диаметрами колб, разными цоколями и разным светом в зависимости от назначения лампы. Более того, этот ассортимент будет еще больше, если учесть, что энергосберегающие лампы также представляют собой лампы дневного света со встроенными пусковыми устройствами.
elektro-tovars.ru
Люминесцентная лампа – энциклопедия VashTehnik.ru
Люминесцентная лампа – источник света низкого давления, где ультрафиолетовое излучение, как правило, ртутного разряда преобразуется слоем люминофора, нанесённого на стенки колбы прибора, в видимое. Рассмотрим, в чем отличие устройств от галогенных и прочих схожих.
Люминесцентный источник света
История развития люминесцентных ламп
Явления флюоресценции начали изучать в 19 веке. Среди учёных мужей выделим Майкла Фарадея, Джеймса Максвелла и Джорджа Стокса. Самым примечательным изобретением называют колбу Гисслера. Этот учёный попытался откачать воздух при помощи ртутного насоса. Разряжение в колбе достигло высокого уровня – прежде не удавалось создать подобные условия. Одновременно освобождённый объем заполнился парами ртути. Гисслер обнаружил, что, располагая электроды по двум концам длинной колбы и прикладывая к ним напряжение, он лицезреет зелёное свечение.
Это тлеющий разряд, положенный сегодня в основу приборов. При низком давлении внутри образуется электронный луч между катодом и анодом. Местами элементарные частицы сталкиваются с малочисленными ионами газа, отдавая энергию. За счёт переходов электронов на новые уровни образуется свечение, цвет зависит от применяемого химического элемента и прочих условий. Трубки Гисслера с 80-х годов 19 века поставлены в массовое производство. Преимущественно для развлекательных и прочих сопутствующих целей. К примеру, известные неоновые вывески.
Причины флюоресценции различались. Часто эффект провоцировался электромагнитным излучением. Известный предприниматель Томас Эдисон экспериментировал с нитями из кальция, возбуждая их рентгеновскими лучами. Аналогичными работами занимался Никола Тесла.
Разновидности люминесценции
Согласно причинам, порождающим явление, люминесценция делится на классы:
Катодолюминесценция, происходит в трубках Гисслера.
Фотолюминесценция: свечение веществ под действием волн близких к видимому диапазону.
Радиолюминесценция идентична предыдущей, возбуждающие волны сильно пониженной частоты.
Термолюминесценция: свечение образуется за счёт нагрева тела.
Электролюминесценция заметна на примере светодиодов.
Биолюминесценция. Ярким примером класса служит население дна океана.
Биолюминесцентная лампа
Люминесцентная лампа
Люминесцентные лампы относятся к разрядным, обсуждение начнём с процесса ионизации. Иначе окажется неинтересно из-за незнания базиса. До появления светодиодов разрядные лампы обнаруживали высокую светоотдачу. Они до 80% экономнее, нежели приборы с нитями накала. В среде газа, пара или смеси образуется тлеющий разряд. Когда среда уже ионизирована, сложностей нет, но на старте приходится использовать крайне высокие напряжения, достигающие единиц кВ.
Разрядная лампа за малым исключением – в отвёртках-индикаторах – работает в паре со стартером. Иногда эту часть неправильно называют балластом. Это разные вещи:
Стартером (пускорегулирующим аппаратом) называется часть схемы, где формируется высокое напряжение для розжига дуги. В результате резкого скачка толща газа или пара пробивается, ионизируется и проводит ток. Потом необходимость в поддержании на электродах высокого напряжения пропадает. Пускорегулирующий аппарат работает исключительно на старте.
Балластом именуется совокупность приспособлений, призванных скомпенсировать отрицательное сопротивление люминесцентной лампы. Когда ток растёт, проводимость между электродами увеличивается. Этот процесс не принимает лавинообразный характер, исключает выход оборудования из строя благодаря балласту, включённому последовательно в цепь. Он ограничивает рост тока до конкретного уровня.
Балласт и пускорегулирующее устройство сложно разделимы. К примеру, дроссель создаёт резкий скачок напряжения в нужный момент, его импеданс одновременно ограничивает и величину тока.
Устройство лампы
Принцип розжига дуги и конструкция разрядной лампы
Люминесцентная лампа состоит из длинной стеклянной колбы, на концах которой контактные площадки с электродами. Особенность конструкции такова, что параллельно с лампой приходится включать часть балласта. Электрод имеет два выхода наружу, напоминая вольфрамовую подкову. Отличие люминесцентных ламп: на стенки стеклянной колбы нанесено специальное вещество, светящееся под действием ультрафиолетового излучения. Напомним, внутри находятся пары ртути или вещество, способное при относительно низком напряжении старта поддерживать в объёме тлеющий разряд с нужной частотой волны.
Разберёмся, как работает зажигание. Параллельно люминесцентной лампе включается биметаллическое реле. Через него питается напряжением сети небольшой разрядник. Он представляет сильно уменьшенную копию главной лампы и для ионизации хватает 220 В. Тлеющий разрядник постепенно подогревает биметаллическое реле, производящее питание. По мере повышения температуры контакты размыкаются. В результате разрядник гаснет, а биметаллическое реле, спустя некий период, снова замыкается. Циклический процесс по времени занимает 1-2 сек.
Посмотрим, как при помощи описанного приспособления разжечь люминесцентную лампу. Действующего значения напряжения 220 В не хватает, чтобы ионизировать газ в колбе. Конструкторы пошли на оригинальный ход – использовали дроссель. Это катушка индуктивности с двумя обмотками на общем сердечнике. Намотаны так, чтобы при резком пропадании формировать скачок напряжения большой амплитуды. Описание работы в комплексе:
Люминесцентная лампа питается через дроссель, они включены последовательно. Стартер включён параллельно колбе через подковообразные электроды.
В результате при наличии напряжения в начальный момент времени зажигается разрядник и греет реле. Сопротивление контактов мало, 220 В прикладываются к дросселю. Там начинается процесс запасания реактивной мощности.
Когда разрядник сильно нагревает контакты биметаллического реле, оно разрывает цепь. Как следствие, питание на дросселе пропадает, в результате образуется резкий скачок напряжения. Это вызывает ответную реакцию, амплитуда импульса многократно возрастает (до единиц кВ).
Разница потенциалов на электродах люминесцентной лампы становится настолько большой, что ионизирует газ в колбе. Стартует процесс тлеющего разряда.
В результате напряжение на стартере падает, разрядник более не зажигается.
Так происходит розжиг дуги люминесцентной лампы в стандартном режиме.
Схема люминесцентной лампы
Систему называют предварительным подогревом электродов. Ток по мере нагревания биметаллического реле проходит через вольфрамовые подковы, повышая температуру и облегчая процесс розжига. Если в помещении слишком холодно, с первого раза процесс терпит неудачу. Тогда цикл повторяется, температура вольфрамовых электродов становится чуть выше. Выглядит, как быстрое моргание света при замыкании выключателя.
Как зажечь сгоревшую люминесцентную лампу
Чаще у люминесцентной лампы сгорает вольфрамовый электродов в форме подковы. Тогда через него уже нельзя подать питание на стартер, включённый параллельно колбе. Используется схема, приведённая на рисунке ниже. На электродах лампы постоянно поддерживается высокое напряжение (выше 600 В). Этим обеспечивается тлеющий разряд. Режим работы люминесцентной лампы становится напряжённым, и долго устройство функционировать не сможет.
Схема сгоревшей лампы
Обратите внимание, снаружи оба выхода каждого электрода замыкаются накоротко. Этим обеспечивается работа оставшихся внутри огрызков вольфрамового электрода. Диоды служат для правильной коммутации каждой полуволны питающего напряжения, конденсаторы доводят уровень разницы потенциалов до заданного.
Отличие люминесцентной лампы от разрядной
Главной особенностью рассматриваемых устройств становится наличие люминофора на стенках колбы. Явление люминесценции наблюдалось с древних времён. Наиболее известно указанное свойство у фосфора.
Многие кристаллы под действием ультрафиолета начинают лучиться, но температура не меняется. Напомним закон Вина для абсолютно чёрного тела. Он гласит, что максимум излучения зависит от температуры и увеличивается с её повышением. Чтобы тело стало красным, его поверхность становится горячей, 500 градусов и выше. Прочие цвета по спектру идут выше, значит, и температура поднимается больше.
Но явления люминесценции проявляется при нормальных условиях, даже мороз не помеха. Известно, что при температуре абсолютного нуля непрерывный спектр излучения некоторых тел становится просто дискретным. Вместо хаотичного потока квантов намечается упорядоченность. Явление люминесценции не пропадает. Это объясняется простым образом:
При повышенной температуре электроны переходят между уровнями совершенно хаотичным образом. Каждое тело светится при нагревании в зависимости от конкретной температуры. К примеру, прочные металлы легко доходят до нужной кондиции, а дерево вначале чернеет, активно окисляясь кислородом воздуха.
В основе явления люминесценции лежит принцип поглощения телом волн определённой частоты. Чаще это инфракрасный или ультрафиолетовый диапазоны. Проще всего привести пример с шариковой «ручкой для шпионов». Её чернила характерно светятся при облучении волнами ультрафиолетового диапазона. Хотя прежде бумага выглядит белой.
Аналогичным образом каждое тело демонстрирует спектр поглощения, а излучение происходит на пониженной волне. Это объясняется тем, что часть падающей на материал энергии рассеивается в виде тепла. Говорят, что тело излучает в стоксовой (от имени учёного) области спектра. Встречаются вещества, у которых волна люминесценции выше возбуждающей. Тогда говорят, что тело светится в антистоксовой области спектра. Наконец, встречаются материалы, проявляющие оба вида свойств.
В случае люминесцентных ламп волна возбуждения образуется тлеющим разрядом паров ртути и лежит в ультрафиолетовом диапазоне. Свет, излучаемый люминофором, видимый. И здесь приходим к важной характеристике – цветовой температуре. Если люминофор даёт яркий белый свет, говорят, оттенок холодный. Это хорошо для создания рабочего ритма мозга. А лампы носят название дневного света. Чаще и встречаются на практике.
vashtehnik.ru
Люминесцентная лампа
Люминесцентная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов.
Различные виды люминесцентных ламп
Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.
Коридор, освещенный люминесцентными лампами
Область применения
Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту.
Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет ещё более улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.
Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000 - 20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.
История
Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида.В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение.В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово - белый свет. Эта лампа имела умеренный успех.В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синезелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность, чем лампы Гайсслера и Эллинойса.В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно белоцветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.
Принцип работыПри работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы возникает электрический разряд. Лампа заполнена парами ртути, и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.
Особенности подключения
С точки зрения электротехники, люминесцентная лампа — устройство с отрицательным сопротивлением (чем больший ток через неё проходит — тем больше падает её сопротивление). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).
В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта может применяться реактивное сопротивление (конденсатор или катушка индуктивности). В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.
Произведённый в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы.
Электромагнитный балластЭлектромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер.
Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом.
стартер
Дроссель также может издавать низкочастотный гул.Помимо вышеперечисленных недостатков, можно отметить ещё один.При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования.Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.
Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.
электронный балласт
Электронный балласт
Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу.Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом.При использовании электронного балласта, можно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.
Механизм запуска лампы с электромагнитным балластом
В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами.
Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты.
подключение 58-ваттных ламп классическим способом в рекламном щите
Пускатель включается параллельно лампе. В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю.
Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом.
Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе, что и вызывает зажигание лампы.
К этому моменту электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного.
В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя.
В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы.
В некоторых случаях при изменении характеристик пускателя или лампы возможно возникновение ситуации, когда стартер начинает срабатывать циклически.
Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.
Механизм запуска лампы с электронным балластом
В отличие от электромагнитного балласта для работы электронного балласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам.
Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего - переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов).
В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать, например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы.
Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе, в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы.
Как правило, это ведет и к росту тока подогрева катодов, поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается.
После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается, и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии.
Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого, приложив достаточно высокое напряжение к катодам, что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути, этот метод аналогичен технологиям, применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей, поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов, которые не могут быть запущены обычными методами из-за невозможности подогрева катодов.
В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминесцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить, невзирая на перегорание спиралей подогрева, и ее срок службы будет ограничен только временем до полного распыления электродов.
Причины выхода из строя
Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели.
Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5
В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы.
Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп.
Электроды лампы постоянно разогреваются, и в конце концов, одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы.
После этого на минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам.
Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится.
Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе.
Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит.
Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.
Люминофоры и спектр излучаемого света
Многие люди считают свет, излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.
Типичный спектр люминесцентной лампы.
Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет,в то время как красного и зелёного излучается меньше.
Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета.Однако такие лампы, как правило, имеют очень высокую световую отдачу.
В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют более низкую световую отдачу.
Также существуют люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.
Варианты исполнения
По стандартам лампы дневного света разделяются на колбные и компактные.
Советская люминесцентная лампа мощностью 20 Вт( «ЛБ-20» ). Современный европейский аналог этой
лампы — T8 1
Колбные лампы представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:T5 ((диаметр 5/8 дюйма=1.59 см),T8 (диаметр 8/8 дюйма=2.54 см),T10 (диаметр 10/8 дюйма=3.17 см) и T12 (диаметр 12/8 дюйма=3.80 см)).
Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах и т. д.
Компактные лампы представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на (G23,G24Q1,G24Q2, G24Q3). Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания.
Преимуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.
G23
Универсальная лампа Osram для всех типов цоколей G24
У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт.
Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.
G24
Лампы G24Q1, G24Q2 и G24Q3 также имеют встроенный стартер, их мощность, как правило, от 13 до 36 Ватт.
Применяются как в промышленных, так и в бытовых светильниках.
Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).
Утилизация
Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью.
По истечении срока службы в России лампу, как правило, выбрасывают куда попало.
На проблемы утилизации этой продукции в России не обращают внимания ни потребители, ни производители, хотя существует несколько занимающихся ею фирм.
Александр ГореславецКомпания "Додэка Электрик".
Материал из Википедии — свободной энциклопедии
eleczon.ru
История люминесцентной лампы. - 26 Марта 2012 - Консультации
Ртутная люминесцентная лампа - представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.
Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово - белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синезелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность, чем лампы Гайсслера и Эллинойса.
Особенно важным для истории, которая продолжалась, было изобретение в 1927 году Эдмундом Джермером (Edmund Germer) (1901-1987) и его немецкими коллегами Фридрихом Мейером (Friedrich Meyer) и Гансом Шпаннером (Hans Spanner) ртутной паровой лампы высокого давления.
Некоторые историки называют Э. Джермера изобретателем первой реальной люминесцентной лампы. Первоначальной целью Э. Джермера было сконструировать источник ультрафиолетового света, которым бы можно было управлять без сложной системы регулирования электричеством. Покрыв внутренние стенки лампы люминесцентным материалом, который превращал энергию ультрафиолетового излучения в белый равномерный свет, воспринимаемый человеческим глазом, Э. Джермер понял, что такая лампа могла бы также стать источником света. Э. Джермер также усовершенствовал форму люминесцентной лампы, которая увеличивала давление пара внутри колбы.Был получен немецкий патент, но лампа никогда не была запущена в серийное производство. Компания "General Electric” заплатила 180 000 долларов за приобретение этого патента. К 1934 году фирма "General Electric” в Великобритании (несмотря на название, эта компания не имела прямой связи с "General Electric” в США) провела успешный эксперимент по созданию согласно концепции люминесцентной лампы. Лампа производила зелёный свет и имела значительную световую отдачу – 35 лм/Вт. Ободрённая докладом об успешных экспериментах Артура Комптона (Arthor Compton), известного физика и консультанта компании, и, имея в наличии все ключевые элементы, команда под руководством Джорджа Э. Инмана (George E. Inman) построила прототип люминесцентной лампы в 1934 году в технической лаборатории в штате Огайо. В добавление к талантливым инженерам и техникам наряду с отличным оборудованием для научно-исследовательской и технической работы по флуоресценции "General Electric” контролировал ключевые патенты по люминесцентному освещению, включая патенты, первоначально выданные Купер-Хьюитту, Муру и Кюху. Важнее, чем эти, был патент по электроду, который не разрушался под давлением газов, применявшихся, в конечном счёте, в люминесцентных лампах. Это изобретение было сделано Альбертом У. Халлом (Albert W. Hull) из исследовательской лаборатории Schenectady компании "General Electric”.
Несмотря на то, что "General Electric” много лет решала проблему с окончательным получением патентов, мощь, которую компания обрела в производстве и маркетинге, дала ей возможность занять важнейшее положение на появляющемся рынке люминесцентного освещения.
Продажи люминесцентных ламп начались в 1938 году, когда трубки четырёх разных размеров были представлены на рынок компанией «General Electric».
mir-td.ru
Основы работы люминесцентной лампы
Содержание статьи:
1.Хроника изобретения люминесцентной лампы
2.Строение люминесцентной лампы
3.Работа люминесцентных ламп
Люминесцентная лампа в наше время является незаменимой частью любого офиса и дома. Большинство ее преимуществ, просто вытеснили из продажи лампы накаливания. Одним из достоинств источника неестественного освещения является экономичность люминесцентных ламп.
Хроника изобретения люминесцентной лампы
История создания данных ламп довольно объемна по времени. Для того чтобы лампочки были в таком виде, в каком сегодня они встречаются почти в каждом доме, ученым пришлось изрядно поэкспериментировать. Первым изобретением в 1856 году была стеклянная трубка, внутри нее находился разряженный газ. Создателем этого является немецкий изобретатель Генрих Гейслер. Далее в 1896 Томас Эдисон придумал покрыть колбу вольфраматом кальция с рентгеновским излучением. Однако лампа имела малый срок службы. И первым создателем практически аналога современных люминесцентных ламп является Даниэль Фарлана Мур.
Строение люминесцентной лампы
Состав лампы: разного объема и конфигурации стеклянный сосуд, два временами четыре антикатода, инертный метан, пары меркурия, люминофор, проект старта. Электрод состоит из двух гальванических контактов, к ним присоединяется электрический ток и волокно накала. Для лучшего распространения электронов во время функционирования и длительной производительности лампы волокно накала покрывают специально предназначенным эмиссионным веществом.
Работа люминесцентных ламп
Последовательно разогретые электроны возникают вследствие возникновения тока в электродах. Но данных электронов слишком мало для того чтоб разжечь промежду антикатодами заряд-полчище ионизированных частичек газа. Поэтому далее работать начинает та доля конфигурации, которая ручается за пуск лампы. Краткосрочный толчок напряжения разжигает инертный газ, а далее и пары меркурия. Совместное действие этих веществ, повергает к происхождению света в ультрафиолетовой части незримого дня нас спектра действия. Люминофор используется для того чтобы изменить ультрафиолетовый свет в видимый. Он наносится на стенки стеклянного сосуда. Таким образом, получается двойное изменение. Антикатоды лампы испускают электроны, которые ионизируют пары меркурия, а ионизированные частички активизируют люминофор. Тем самым вынуждая его испускать видимый нами свет.
Длинная лампа дневного света работает как схема запуска, которая состоит из: дросселя, конденсатора и стартера. А лапочки экономки содержат другие электрические компоненты: диоды, микросхемы. Дроссель-это электромагнитный пускорегулирующий аппарат (ЭмПРА). Мощность его должна соответствовать общей мощности подключаемого к нему устройства. Стартер-это маленькая лампочка, наполненная неоном с двумя разомкнутыми в нормальном положении электродами. Конденсатор-это электрическая цепь, с постоянными либо переменными значениями проводника и маленькой проводимостью электрического тока. Одним словом, накопитель электрического тока.
В настоящее время производятся различного состава люминофоры. Это делается для того, чтобы менять цвет освещения или его температуру. Поэтому на лампочках делаются маркировки. Желтое (теплое) освещение имеет температуру 2700 К, дневное (белое) около 4100 К, а яркое (холодное) порядка 6000 К.
Таким образом, можно сделать вывод, что люминесцентные лампы довольно экологические и экономные в использовании. Что немаловажно при выборе домашнего, офисного, рабочего, освещения в магазинах, супермаркетах, учебных заведениях, общественных зданиях. Также они являются в 5-7 раз экономичней ламп накаливания и намного дешевле светодиодных.
kotelstroi.com
Ртутная лампа — Традиция
Материал из свободной русской энциклопедии «Традиция»
Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Ртутная лампа представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.
Ртутная лампа, люминесце́нтная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров, переизлучающих под воздействием ультрафиолетового излучения от электрического разряда в плазме (видимое свечение разряда не превышает нескольких процентов).
Люминесцентные лампы широко применяются для общего освещения, их световая отдача в 4-6 раз больше, чем у ламп накаливания той же электрической мощности. Срок службы люминесцентных ламп в 10-20 раз превышает срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя.
Острое отравление ртутью проявляется через несколько часов.Симптомы:
общая слабость, отсутствие аппетита, головная боль,
боль при глотании, металлический вкус во рту, слюнотечение,
набухание и кровоточивость десен, появление по краю дёсен каймы сине-чёрного цвета,
тошнота и рвота.
Как правило, появляются сильнейшие боли в животе, слизистый понос (иногда с кровью).Нередко воспаление легких, катар верхних дыхательных путей, боли в груди, кашель и одышка, часто сильный озноб.Температура тела поднимается до 38-40 °C. В моче значительное количество ртути.
В тяжелейших случаях через несколько дней наступает смерть.
Что делать, если разбилась ртутная лампа[править]
Загрязненные помещения подлежат демеркуризации, то есть комплексу мероприятий по удалению ртути различными методами:
механическими (сбор пролитой ртути (в т.ч. на протравленную медную пластинку) и передача компетентным органам; сорбция, влажная механическая уборка, удаление загрязненных конструкций и т.п.),
химическими (перевод ртути в связанное состояние, для снижения скорости испарения с помощью хлорного железа, порошковой серы, растворов препарата гипохлорит натрия ("Белизна") и др.).[1]
Область применения[править]
Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту. Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, увеличить экономичность, повысить компактность.
Главные достоинства люминесцентных ламп по сравнению с лампами накаливания — высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность, равную лампе накаливания 100 Вт) и более длительный срок службы (2000[2]-20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.
Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.
Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида. В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение. В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово-белый свет. Эта лампа имела умеренный успех. В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синего-зелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность чем лампы Гайсслера и Эдисона. В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждёной плазмой в более однородно бело-цветной свет. Э. Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.
Первые люминесцентные лампы были названы лампами дневного света (ЛДС). Цветовую температуру их излучения положили равной 6500 °К (как у источника D65).
Тут обнаружилось странное явление психологического порядка: создаваемое ими освещение многим показалось неприятным, свет ощущали холодным. Видимо, с вечерними и ночными условиями, с более слабой освещённостью ассоциируется свет с преобладанием длинноволнового излучения - красноватый, тот, что создаётся лампами накаливания. Здесь уместно вспомнить, что в начале прошлого века, после ещё более красного света свечей и керосиновых ламп многие чувствовали себя не уютно при свете ламп накаливания, а некоторые поэты называли его "голубым электрическим светом".
Для устранения этого эффекта, были созданы разновидности люминесцентных ламп с различными цветовыми температурами (Тц): лампы холодного белого света (ЛХБ, Тц=4300 °К), лампы белого света (ЛБС, Тц=3500 °К) и лампы тёплого белого света (ЛТБ, Тц=2800 °К, как у ламп накаливания).[3].
Принцип работы[править]
При работе люминесцентной лампы между двумя электродами находящимися в противоположных концах лампы возникает тлеющий электрический разряд. Лампа заполнена парами ртути и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.
Особенности подключения[править]
С точки зрения электротехники люминесцентная лампа — устройство с отрицательным дифференциальным сопротивлением (чем больший ток через неё проходит — тем меньше её сопротивление, и тем меньше падение напряжения на ней). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).
В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта должно применяться реактивное сопротивление (конденсатор или катушка индуктивности).
В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.
Электромагнитный балласт[править]
Произведеный в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cos ф, так как реактивная мощность балласта зачастую больше мощности лампы
Электромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер. Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом. Дроссель также может издавать низкочастотный гул.
Помимо вышеперечисленных недостатков, можно отметить ещё один. При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования. Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.
Во избежание травмирования на производстве запрещено использовать люминесцентные лампы с электромагнитным балластом для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.
Электронный балласт[править]
электронный балласт
Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу. Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом. При использовании электронного балласта возможно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.
Пуск с электромагнитным балластом[править]
подключение 58-ваттных ламп классическим способом в рекламном щите
В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами. Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты. Пускатель включается параллельно лампе.
В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю. Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом. Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе, что и вызывает зажигание лампы. Параллельно стартеру подключен миниатюрный конденсатор небольшой емкости, служащий для уменьшения создаваемых радиопомех. Кроме того, он оказывает влияние на характер переходных процессов в стартере так, что способствует зажиганию лампы. Конденсатор вместе с дросселем образует колебательный контур, который контролирует пиковое напряжение и длительность импульса зажигания (при отсутствии конденсатора во время размыкания электродов стартера возникает очень короткий импульс большой амплитуды, генерирующий кратковременный разряд в стартере, на поддержание которого расходуется большая часть энергии, накопленной в индуктивности контура). К моменту размыкания стартера электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного.
В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя. В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы. В некоторых случаях при изменении характеристик пускателя и\или лампы возможно возникновение ситуации когда стартер начинает срабатывать циклически. Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.
Пуск с электронным балластом[править]
В отличие от электромагнитного балласта для работы электронного баласта зачастую не требуется отдельный специальный стартер так как такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам. Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего — переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов). В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы.
Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы. Как правило это ведет и к росту тока подогрева катодов поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается. После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии. Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого приложив достаточно высокое напряжение к катодам что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути этот метод аналогичен технологиям применяемым для запуска ламп с холодным катодом (CCFL).
Данный метод достаточно популярен у радиолюбителей поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов которые не могут быть запущены обычными методами из-за невозможности подогрева катодов. В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминисцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить невзирая на перегорание спиралей подогрева и ее срок службы будет ограничен только временем до полного распыления электродов.
Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5
Причины выхода из строя[править]
Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели. В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы. Когда паста-активатор выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп. Лампа превращается в диод после потери эмиссии одного из электродов, ведь эмиссия другого электрода всё еще сохранилась. Диод в свою очередь ведёт себя в цепи электромагнитного балласта как выпрямитель, ток дросселя возрастает в разы из-за насыщения сердечника балласта, напряжение на лампе возрастает(поскольку нет больше электромагнитного сопротивления), и стартер начинает срабатывать. Электроды лампы постоянно разогреваются и в конце концов одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы. После этого минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам. Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится. Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе. Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит. Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.
Люминофоры, спектры[править]
Типичный спектр люминесцентной лампы.
Многие считают свет излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.
Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет, в то время как красного и зелёного излучается меньше. Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета. Однако такие лампы как правило имеют очень высокую световую отдачу.
В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более естественному воспроизведению света. Однако такие лампы как правило имеют более низкую световую отдачу.
Также существуют люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как считается, что у птиц, в отличие от людей, полоса воспринимаемого спектра несколько шире (с учётом ближней УФ области).
Производятся лампы, предназначенные для специальных целей, например для освещения мясных прилавков в супермаркетах. Свет таких ламп имеет розоватый оттенок, в результате такого освещения сырое мясо приобретает более привлекательный для покупателей вид.[4]
Варианты исполнения[править]
По стандартам лампы дневного света разделяются на колбные и компактные.
Колбные лампы[править]
Файл:ЛДС20Вт.JPG
Советская люминесцентная лампа мощностью 20 Вт(«ЛД-20»). Современный европейский аналог этой лампы — T8 18W
Представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:
T5 (диаметр 5/8 дюйма=1.59 см),
T8 (диаметр 8/8 дюйма=2.54 см),
T10 (диаметр 10/8 дюйма=3.17 см) и
T12 (диаметр 12/8 дюйма=3.80 см).
Применение[править]
Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах на транспорте и т. д.
Компактные лампы[править]
Универсальная лампа Osram для всех типов цоколей G24
Представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на:
Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания. Премуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.
G23[править]
У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт. Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.
G24[править]
Лампы G24Q1,G24Q2 и G24Q3 также имеют встроенный стартер, их мощность как правило от 11 до 36 Ватт. Применяются как в промышленных, так и в бытовых светильниках. Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).
Все люминесцентные лампы содержат пары ртути (40 — 70 мг), которые ядовиты, и при повреждении баллона лампы выбрасываются в атмосферу. Ртуть накапливается в организме человека, нанося вред здоровью, поэтому проблема утилизации ртутных ламп очень актуальна.
По истечении срока службы лампы, как правило, выбрасывают куда попало, хотя существовали запреты СЭС смешивать подобные отходы с бытовым мусором. Фактически эти запреты не работают, так как плохо организован сбор и обезвреживание ламп.
На проблемы утилизации этой продукции в России индивидуальные потребители не обращают внимания, а производители стремятся устраниться от проблемы.
Существует несколько фирм по утилизации ламп, и крупные промышленные предприятия обязаны сдавать лампы на переработку.
До появления светодиодных источников света ртутные лампы "холодного света" были наиболее экономичными. Однако из-зв экологических проблем в последнее время мощные светодиоды составляют всё большую конкуренцию ртутным лампам.