Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Теплопередача. Основные формулы передачи теплоты и законы. Мощность передачи теплоты формула


Теплопередача. Основные формулы передачи теплоты и законы.

Теплопередача. Основные формулы передачи теплоты и законы.

Теплопередача (теория теплообмена) - называется наука изучающая процессы передачи теплоты между телами, распространение теплоты в пространстве и распределение температуры в твердых, жидких и газообразных телах.

Три основные формы передачи теплоты: теплопроводность, конвективный теплообмен и лучистый теплообмен.

Теплопроводность представляет собой форму распространения теплоты путем непосредственного соприкосновения отдельных частиц тела, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим

Конвективным теплообменном называется форма переноса теплоты, в пространстве, осуществляемая перемещающимися частицами жидкости (капельная жидкость или газ). При перемещении в пространстве различно нагретых частиц жидкости происходит непосредственное их соприкосновение, поэтому здесь имеет место теплопроводность. Следовательно конвективный теплообмен представляет собой совокупное действие двух процессов – конвекции и теплопроводности.

В зависимости от причины вызывающей движение жидкости, различают конвективный теплообмен при свободном движении жидкости (свободная конвекция) и конвективный теплообмен при вынужденном движении жидкости (вынужденная конвекция).

Тепловым излучением называется процесс переноса теплоты в пространстве электромагнитными волнами.

Лучистым теплообменом, или тепловым излучением называется форма передачи теплоты излучением между телами, который включает последовательное превращение внутренней энергии тела в энергию излучения, распространение ее в пространстве и превращение энергии излучения во внутреннюю энергию другого тела.

Температурное поле

Совокупность значений температуры в данный момент времени

для всех точек пространства, определяемых координатами называется температурным полем

Температурный градиент

Если соединить точки тела, имеющие одинаковую температуру, получим поверхность равных температур, называемую изотермической. Изотермической поверхностью тела называется геометрическое место точек, имеющих одинаковую температуру.

Температурный градиент есть вектор направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали (К/м)

Тепловой поток

Количества теплоты Q , проходящее в единицу времени через изотермическую поверхность F , называется тепловым потоком. Тепловой поток, приходящийся на единицу поверхности, называется удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности q.

Если градиент температуры для различных точек поверхности различный, то количество теплоты через всю изотермическую поверхность в единицу времени равно

, где Q – тепловой поток, Вm; dF – элемент изотермической поверхности, м.

 

 

Теплопроводность. Закон Фурье. Коэффициент теплопроводности.

Необходимым условием распространения теплоты являетсянеравномерность распределения температуры в рассматриваемой среде. Таким образом, для передачи теплоты теплопроводностью необходимо неравенство нулю температурного градиента в различных точках тела.

Закон Фурье:

Согласно закону Фурье количество теплоты проходящий через элемент изотермической поверхности

за промежуток времени , пропорционально температурному градиенту

,

где – коэффициент пропорциональности есть физический параметр вещества и называется коэффициентом теплопроводности, Вт/(м·°C); – элементарная площадь поверхности теплообмена, м2; – временной промежуток, сек.

Количество теплоты, проходящее в единицу времени через единицу площади изотермической поверхности , называется плотностью теплового потока.

Дифференциальные уравнения конвективного теплообмена. Основные понятия.

Дифференциальное уравнение теплообмена получается при рассмотрении передачи теплоты теплопроводностью через, практический, неподвижный слой жидкости (пограничный слой), который имеет место вблизи твердого тела, омываемого жидкостью (

) и передачи теплоты к пограничному слою за счет конвективного теплообмена ( ):

Дифференциальное уравнение энергии при условии однородности и несжимаемости жидкости, отсутствия внутренних источников теплоты и работы расширения, а также постоянства физических параметров жидкости в пределах элементарного объема формулируется следующим образом:

Дифференциальное уравнение неразрывности получается на основе закона сохранения массы и, для сжимаемой жидкости имеет следующий вид:

Уравнение движения (уравнение Навье-Стокса) получается на базе первого и второго законов Ньютона и в векторной форме записи можно представить в виде

Понятия о теории подобия.

Для подобия физических процессов необходимо говорить о подобии физических величин и явлений. Два или несколько явлений будут подобны, если подобны все физические величины, характеризующие эти явления, т.е. подобные между собою явления имеют одинаковые безразмерные комплексы - критерии подобия. Этот вывод свидетельствует о том, что в опытах нужно измерять те величины, которые входят в критерии подобия, характеризующие данный процесс.

Важной теоремой теории подобия является утверждение о том, что решение дифференциального уравнения, описывающего данный процесс, может быть представлено в виде функциональной зависимости между критериями подобия, характеризующими этот процесс и полученными из исходного уравнения. Это утверждение говорит о том, опытные данные надо обработать в виде зависимости между критериями подобия.

Наряду с приведенными выше двумя теоремами подобия, важным является и утверждение о том, что подобны между собой те явления, которые принадлежат к одному классу, к одному роду и имеют равные определяющие критерии подобия. Этот вывод позволяет полученные в опыте расчетные зависимости распространить на группу явлений, подобных исследованному.

Таким образом, теория подобия, при наличии дифференциальных уравнений, описывающих рассматриваемый процесс, позволяет, не решая сами уравнения, получить выражения чисел (критериев) подобия и на их основе получить расчетные зависимости – уравнения подобия.

Теплообмен при кипении.

Опыт показывает, что температура кипящей жидкости всегда несколько выше температуры кипения ts. Она остается почти постоянной в направлении от свободного уровня к поверхности теплообмена (рис. 14) и лишь в слое толщиной 2 – 5 мм у самой стенки резко возрастает. Следовательно, в прилегающем к стенке слое жидкость перегрета на Δt=t – ts; эта величина называется температурным напором.

Рис. 14. Кривая распределения температуры в жидкости при пузырьковом кипении   Рис. 15. Зависимость плотности теплового потока q и коэффициента теплоотдачи α от температурного напора при кипении воды при атмосферном давлении

В начале кипения -область А (Рис. 15) при Δt = 0 - 5 ºС, q= 100 – 5600 Вт/м2 значение коэффициента теплоотдачи невелико и определяется условиями свободной конвекции однофазной жидкости.

При дальнейшем кипении и повышении Δt значения коэффициентов теплоотдачи и q резко увеличиваются и при Δt =25 ºС достигают своего максимального значения: αкр=5,85·104 Вт/(м2·К), qкр=1,45·106Вт/м2. Эту область, обозначенной на рис. 15 буквой В, называют областью пузырькового кипения.

Последующее повышение Δt приводит к еще более интенсивному

процессу образования пузырьков на твердой поверхности. Сливаясь затем между собой, они образуют общую паровую пленку. Образование паровой пленки приводит к резкому снижению интенсивности теплообмена между поверхностью и жидкостью, вследствие большого термического сопротивления пленки. Эта область, обозначена на рис. 15 буквой С и называется переходной областью. Следует отметить, что паровая пленка в этой области неустойчива.

При дальнейшем увеличении перепада температур образовавшаяся на поверхности пленка становится устойчивой, интенсивность теплообмена продолжает падать. При некотором значении перепада температур процесс теплообмена стабилизируется, а коэффициент теплоотдачи имея при том минимальное значение, не зависит от перепада температур. Эта область обозначена на рис. 15 буквой D и называется областью пленочного кипения.

В практических расчетах пузырькового кипения воды удобно пользоваться следующими уравнениями:

(141)

(142)

Зависимости (141) и (142)действительны в диапазоне давлений от 0,1 до 5 МПа.

При пузырьковом кипении фреона 12 в диапазоне температур от – 40 до 10 ºС для определения α рекомендуется формула

(143 )

При кипении фреона 11 может быть использована зависимость

(144)

В этих уравнениях q – в Вт/м2, р – в МПа, коэффициент теплоотдачи – Вт/(м2·К). При вынужденном турбулентном движении кипящей жидкости в трубах теплоотдача осуществляется по-разному. Если обозначить коэффициент теплоотдачи, полученный по формуле (141), αq, а коэффициент теплоотдачи, рассчитанный по уравнению подобия для однофазной жидкости (130 ), αw, то, как показывают опыты, при αq /αw<0,5 коэффициент теплоотдачи при пузырьковом кипении движущейся воды в трубе α=αw а при αq/αw>2; α=αq. В области 0,5 ≤ αq/αw ≤2 коэффициент теплоотдачи определяют по формуле

(145)

При пленочном кипении средний коэффициент теплоотдачи определяется следующим образом:

на вертикальной поверхности

, (146)

где λп – коэффициент теплопроводности пара при температуре насыщения;

μп – динамический коэффициент вязкости пара при температуре насыщения; h – высота стенки,

на горизонтальном цилиндре

, (147)

где d – наружный диаметр цилиндра; ρ – плотность жидкости при температуре насыщения.

Теплопередача. Основные формулы передачи теплоты и законы.

Теплопередача (теория теплообмена) - называется наука изучающая процессы передачи теплоты между телами, распространение теплоты в пространстве и распределение температуры в твердых, жидких и газообразных телах.

Три основные формы передачи теплоты: теплопроводность, конвективный теплообмен и лучистый теплообмен.

Теплопроводность представляет собой форму распространения теплоты путем непосредственного соприкосновения отдельных частиц тела, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим

Конвективным теплообменном называется форма переноса теплоты, в пространстве, осуществляемая перемещающимися частицами жидкости (капельная жидкость или газ). При перемещении в пространстве различно нагретых частиц жидкости происходит непосредственное их соприкосновение, поэтому здесь имеет место теплопроводность. Следовательно конвективный теплообмен представляет собой совокупное действие двух процессов – конвекции и теплопроводности.

В зависимости от причины вызывающей движение жидкости, различают конвективный теплообмен при свободном движении жидкости (свободная конвекция) и конвективный теплообмен при вынужденном движении жидкости (вынужденная конвекция).

Тепловым излучением называется процесс переноса теплоты в пространстве электромагнитными волнами.

Лучистым теплообменом, или тепловым излучением называется форма передачи теплоты излучением между телами, который включает последовательное превращение внутренней энергии тела в энергию излучения, распространение ее в пространстве и превращение энергии излучения во внутреннюю энергию другого тела.

Температурное поле

Совокупность значений температуры в данный момент времени для всех точек пространства, определяемых координатами называется температурным полем

Температурный градиент

Если соединить точки тела, имеющие одинаковую температуру, получим поверхность равных температур, называемую изотермической. Изотермической поверхностью тела называется геометрическое место точек, имеющих одинаковую температуру.

Температурный градиент есть вектор направленный по нормали к изотермической поверхности в сторону возрастания температуры и численно равный пределу отношения изменения температуры к расстоянию между изотермами по нормали (К/м)

Тепловой поток

Количества теплоты Q , проходящее в единицу времени через изотермическую поверхность F , называется тепловым потоком. Тепловой поток, приходящийся на единицу поверхности, называется удельным тепловым потоком, плотностью теплового потока или тепловой нагрузкой поверхности q.

Если градиент температуры для различных точек поверхности различный, то количество теплоты через всю изотермическую поверхность в единицу времени равно

, где Q – тепловой поток, Вm; dF – элемент изотермической поверхности, м.

 

 



infopedia.su

Формула количества теплоты

    \[ Q = c m \Delta T \]

Здесь Q – количество теплоты, c – удельная теплоёмкость вещества, из которого состоит тело, m – масса тела, \Delta T – разность температур.

Единица измерения количества теплоты — Дж (Джоуль) или кал (калория).

По сути тепловая энергия – это внутренняя энергия тела, значит потеря тепла – это уменьшение внутренней энергии тела, а нагревание – увеличение. Удельная теплоёмкость – это характеристика вещества, обозначающая его способность накапливать в себе внутреннюю (тепловую) энергию. Чем она меньше, тем легче вещество нагреть или охладить. Она не пропорциональна плотности, то есть более плотное вещество не обязательно будет нагреваться легче, чем менее плотное. Одно из веществ с большой теплоёмкостью – вода (c = 4187 Дж/(кг * К)).

Примеры решения задач по теме «Количество теплоты»

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Количество теплоты: формула, расчет

 

Что быстрее нагреется на плите – чайник или ведро воды? Ответ очевиден – чайник. Тогда второй вопрос – почему?

Ответ не менее очевиден – потому что масса воды в чайнике меньше. Отлично. А теперь вы можете проделать самостоятельно самый настоящий физический опыт в домашних условиях. Для этого вам понадобится две одинаковые небольшие кастрюльки, равное количество воды и растительного масла, например, по пол-литра и плита. На одинаковый огонь ставите кастрюльки с маслом и водой. А теперь просто наблюдайте, что быстрее будет нагреваться. Если есть градусник для жидкостей, можно применить его, если нет, можно просто пробовать температуру время от времени пальцем, только осторожно, чтобы не обжечься. В любом случае вы вскоре убедитесь, что масло нагревается значительно быстрее воды. И еще один вопросик, который тоже можно реализовать в виде опыта. Что быстрее закипит – теплая вода или холодная? Все снова очевидно – теплая будет на финише первой. К чему все эти странные вопросы и опыты? К тому, чтобы определить физическую величину, называемую «количеством теплоты».

Количество теплоты

Количество теплоты – это энергия, которую тело теряет или приобретает при теплопередаче. Это понятно и из названия. При остывании тело будет терять некое количество теплоты, а при нагревании – поглощать. А ответы на наши вопросы показали нам, от чего зависит количество теплоты? Во-первых, чем больше масса тела, тем большее количество теплоты надо затратить на изменение его температуры на один градус. Во-вторых, количество теплоты, необходимое для нагревания тела, зависит от того вещества, из которого оно состоит, то есть от рода вещества. И в-третьих, разность температур тела до и после теплопередачи также важна для наших расчетов. Исходя из всего вышесказанного, мы можем определить количество теплоты формулой:

Q=cm(t_2-t_1 )  ,

где Q – количество теплоты,m – масса тела,(t_2-t_1 ) – разность между начальной и конечной температурами тела,c – удельная теплоемкость вещества, находится из соответствующих таблиц.

По этой формуле можно произвести расчет количества теплоты, которое необходимо, чтобы нагреть любое тело или которое это тело выделит при остывании.

Измеряется количество теплоты в джоулях (1 Дж), как и всякий вид энергии. Однако, величину эту ввели не так давно, а измерять количество теплоты люди начали намного раньше. И пользовались они единицей, которая широко используется и в наше время – калория (1 кал). 1 калория – это такое количество теплоты, которое потребуется для нагреванияь 1 грамма воды на 1 градус Цельсия. Руководствуясь этими данными, любители подсчитывать калории в съедаемой пище, могут ради интереса подсчитать, сколько литров воды можно вскипятить той энергией, которую они потребляют с едой в течение дня.

Нужна помощь в учебе?

Предыдущая тема: Излучение: сущность, опыт, энергия Следующая тема:&nbsp&nbsp&nbspУдельная теплоёмкость: расчет количества теплоты

Все неприличные комментарии будут удаляться.

www.nado5.ru

Количество теплоты | Физика

Изменить внутреннюю энергию газа в цилиндре можно не только совершая работу, но и нагревая газ (рис. 43). Если закрепить поршень, то объем газа не будет изменяться, но температура, а следовательно, и внутренняя энергия будут возрастать.Нагревание газа при его постоянном объемеПроцесс передачи энергии от одного тела к другому без совершения работы называют теплообменом или теплопередачей.

Энергию, переданную телу в результате теплообмена, называют количеством теплоты. Количеством теплоты называют также энергию, которую тело отдает в процессе теплообмена.

Молекулярная картина теплообмена. При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с более быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую: часть внутренней энергии горячего тела передается холодному телу.

Количество теплоты и теплоемкость. Из курса физики VII класса известно, что для нагревания тела массой m от температуры t1 до температуры t2 необходимо сообщить ему количество теплоты

Q = cm(t2 – t1) = cmΔt.     (4.5)

При остывании тела его извечная температура t2 меньше начальной t1 и количество теплоты, отдаваемое телом, отрицательно.Коэффициент c в формуле (4.5) называют удельной теплоемкостью. Удельная теплоемкость – это количество теплоты, которое получает или отдает 1 кг вещества при изменении его температуры на 1 К.

Удельную теплоемкость выражают в джоулях, деленных на килограмм, умноженный на кельвин. Различным телам требуется неодинаковое количество энергии для увеличения температуры на 1 К. Так, удельная теплоемкость воды 4190 Дж/(кг · К), а меди 380 Дж/(кг · К).

Удельная теплоемкость зависит не только от свойств вещества, но и от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1°C при постоянном давлении ему нужно будет передать большее количество теплоты, чем для нагревания его при постоянном объеме.

Жидкие и твердые тела расширяются при нагревании незначительно, и их удельные теплоемкости при постоянном объеме и постоянном давлении мало различаются.

Удельная теплота парообразования. Для превращения жидкости в пар необходима передача ей определенного количества теплоты. Температура жидкости при этом превращении не меняется. Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии. Ведь среднее расстояние между молекулами газа во много раз больше, чем между молекулами жидкости. Кроме того, увеличение объема при переходе вещества из жидкого состояния в газообразное требует совершения работы против сил внешнего давления.

Количество теплоты, необходимое для превращения при настоянной температуре 1 кг жидкости в пар, называют удельной теплотой парообразования. Обозначают эту величину буквой r и выражают в джоулях на килограмм.

Очень велика удельная теплота парообразования воды: 2,256 · 106 Дж/кг при температуре 100°C. У других жидкостей (спирт, эфир, ртуть, керосин и др.) удельная теплота парообразования меньше в 3-10 раз.

Для превращения в пар жидкости массой m требуется количество теплоты, равное:

Qn = rm     (4.6)

При конденсации пара происходит выделение такого же количества теплоты

Qk = –rm.     (4.7)

Удельная теплота плавления. При плавлении кристаллического тела вся подводимая к нему теплота идет на увеличение потенциальной энергии молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Количество теплоты λ (лямбда), необходимое для превращения 1 кг кристаллического вещества при температуре плавления в жидкость той же температуры, называют удельной теплотой плавления.

При кристаллизации 1 кг вещества выделяется точно такое же количество теплоты. Удельная теплота плавления льда довольно велика: 3,4 · 105 Дж/кг.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Qпл = λm.     (4.8)

Количество теплоты, выделяемое при кристаллизации тела, равно:

Qкр = – λm.     (4.9)

1. Что называют количеством теплоты? 2. От чего зависит удельная теплоемкость веществ? 3. Что называют удельной теплотой парообразования? 4. Что называют удельной теплотой плавления? 5. В каких случаях количество переданной теплоты отрицательно?

phscs.ru

Коэффициент теплопередачи, формула и примеры

Определение и формула коэффициента теплопередачи

Процесс теплопередачи можно разделить на теплоотдачу энергии горячим веществом стенке, процесс теплопроводности внутри стенки и теплоотдачу стенки энергии холодному веществу.

Поток тепла при стационарной теплопередаче величина постоянная, то есть не зависит от времени и координат.

Теплопередача через плоскую стенку

Рассмотрим плоскую стенку, через которую происходит теплопередача. Поток тепла через нее равен:

    \[Q=k\left(T_1-T_2\right)S\left(1\right),\]

где T_2 — температура холодного вещества (T_2=const), T_1=const — температура горячего вещества, S — площадь стенки, k — коэффициент теплопередачи.

Коэффициентом теплопередачи через плоскую стенку является физическая величина (k) равная:

    \[k=\frac{1}{\frac{1}{{\alpha }_1}+\frac{d}{\varkappa }+\frac{1}{{\alpha }_2}}\left(2\right),\]

где {\alpha }_1 — коэффициент теплоотдачи от первой среды к стенке, {\alpha }_2 — коэффициент теплоотдачи от стенки ко второй среде, d — толщина стенки, \varkappa — коэффициент теплопроводности стенки.

Теплопередача через цилиндрическую стенку

Поток тепла свозь стенку в виде цилиндра вычисляют при помощи формулы:

    \[Q=k_l\pi \left(T_1-T_2\right)l\left(3\right),\]

где k_l — линейный коэффициент теплопередачи, l — высота цилиндра.

Линейным коэффициентом теплопередачи через стенку в виде цилиндра является физическая величина (k_l) равная:

    \[k_l=\frac{1}{\frac{1}{\alpha_1d_1}+\frac{1}{2\varkappa}ln\frac{d_2}{d_1}+\frac{1}{\alpha_2d_2}}\left(4\right),\]

где d_1 — внутренний диаметр цилиндра, d_2 — внешний диаметр цилиндра. Для цилиндрических стенок, у которых d_2\le 2d_1 для расчета теплопередачи применяют формулы (1) и (2) для плоской стенки. Если цилиндр (труба) выполнен из материала с высокой теплопроводностью, то величина термического сопротивления (\frac{d}{\varkappa }) стенки стремится к нулю ( \frac{d}{\varkappa }\to 0), тогда коэффициент теплопроводности рассчитывают по формуле:

    \[k=\frac{1}{\frac{1}{{\alpha }_1}+\frac{1}{{\alpha }_2}}\left(5\right)\]

Теплопередача через шаровую стенку

Поток тепла через шаровую стенку с внутренним диаметром d_1 и наружным — d_2, которая разделяет две среды с постоянными температурами T_1 и T_2 равен:

    \[Q=k_{sh}\pi \left(T_1-T_2\right)\left(6\right),\]

Линейным коэффициентом теплопередачи через стенку в виде шара является физическая величина (k_{sh}) равная:

    \[k_{sh}=\frac{1}{\frac{1}{{\alpha }_1{d_1}^2}+\frac{1}{2\varkappa }(\frac{1}{d_1}-\frac{1}{d_2})+\frac{1}{{\alpha }_2{d_2}^2}}\left(7\right)\]

Единицы измерения коэффициента теплопередачи

Основной единицей измерения коэффициента теплопередачи в системе СИ является:

\left[k\right]=Вт/м2К

\left[k_l\right]=Вт/мК

\left[k_{sh}\right]=Вт/К

Примеры решения задач

ru.solverbook.com

Количество теплоты. Уравнение теплового баланса

Количество теплоты. Уравнение теплового баланса

«Физика - 10 класс»

В каких процессах происходят агрегатные превращения вещества? Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его. Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом.

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты.

Молекулярная картина теплообмена.

При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.

Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t1 до температуры t2 необходимо передать ему количество теплоты:

Q = cm(t2 - t1) = cm Δt.         (13.5)

При остывании тела его конечная температура t2 оказывается меньше начальной температуры t1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость — это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.

Удельная теплота парообразования.

Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования.

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: rН20 = 2,256 • 106 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3—10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

Qп = rm.         (13.6)

При конденсации пара происходит выделение такого же количества теплоты:

Qк = -rm.         (13.7)

Удельная теплота плавления.

При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 • 105 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Qпл = λm.         (13.8)

Количество теплоты, выделяемой при кристаллизации тела, равно:

Qкр = -λm         (13.9)

Уравнение теплового баланса.

Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты — положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Q1 + Q2 + Q3 + ... = 0.         (13.10)

Уравнение (13.10) называется уравнением теплового баланса.

Здесь Q1, Q2, Q3 — количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)—(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления - Физика, учебник для 10 класса - Класс!ная физика

Насыщенный пар --- Давление насыщенного пара --- Влажность воздуха --- Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» --- Кристаллические тела --- Аморфные тела --- Внутренняя энергия --- Работа в термодинамике --- Примеры решения задач по теме «Внутренняя энергия. Работа» --- Количество теплоты. Уравнение теплового баланса --- Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» --- Первый закон термодинамики --- Применение первого закона термодинамики к различным процессам --- Примеры решения задач по теме: «Первый закон термодинамики» --- Второй закон термодинамики --- Статистический характер второго закона термодинамики --- Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей --- Примеры решения задач по теме: «КПД тепловых двигателей»

class-fizika.ru

пример. Расчет площади, мощности теплообменника

Расчет теплообменника в настоящее время занимает не более пяти минут. Любая организация, производящая и продающая такое оборудование, как правило, предоставляет всем желающим свою собственную программу подбора. Ее можно бесплатно скачать с сайта компании, либо их технический специалист приедет к вам в офис и бесплатно её установит. Однако насколько корректен результат таких расчетов, можно ли ему доверять и не лукавит ли производитель, сражаясь в тендере со своими конкурентами? Проверка электронного калькулятора требует наличия знаний или как минимум понимания методики расчета современных теплообменников. Попробуем разобраться в деталях.

Что такое теплообменник

Прежде чем выполнять расчет теплообменника, давайте вспомним, а что же это за устройство такое? Тепломассообменный аппарат (он же теплообменник, он же теплообменный аппарат, или ТОА) - это устройство для передачи теплоты от одного теплоносителя другому. В процессе изменения температур теплоносителей меняются также их плотности и, соответственно, массовые показатели веществ. Именно поэтому такие процессы называют тепломассообменными.

расчет теплообменника

Виды теплообмена

Теперь поговорим о видах теплообмена - их всего три. Радиационный - передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена - конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты - это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction - "проводимость"). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА - пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, - это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Типы теплообменников

Прежде чем проводить расчет теплообменника, определяются с его типом. Все ТОА можно разделить на две большие группы: рекуперативные и регенеративные теплообменники. Основное отличие между ними заключается в следующем: в рекуперативных ТОА теплообмен происходит через разделяющую два теплоносителя стенку, а в регенеративных две среды имеют непосредственный контакт между собой, часто смешиваясь и требуя последующего разделения в специальных сепараторах. Регенеративные теплообменники подразделяются на смесительные и на теплообменники с насадкой (стационарной, падающей или промежуточной). Грубо говоря, ведро с горячей водой, выставленное на мороз, или стакан с горячим чаем, поставленный остужаться в холодильник (никогда так не делайте!) - это и есть пример такого смесительного ТОА. А наливая чай в блюдце и остужая его таким образом, мы получаем пример регенеративного теплообменника с насадкой (блюдце в этом примере играет роль насадки), которая сначала контактирует с окружающим воздухом и принимает его температуру, а потом отбирает часть теплоты от налитого в него горячего чая, стремясь привести обе среды в режим теплового равновесия. Однако, как мы уже выяснили ранее, эффективнее использовать теплопроводность для передачи теплоты от одной среды к другой, поэтому более полезные в плане теплопередачи (и широко используемые) ТОА на сегодняшний день – конечно же, рекуперативные.

расчет рекуперативного теплообменника

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

расчет кожухотрубного теплообменника

Гидравлический расчет

Гидравлические или гидромеханические, а также аэродинамические расчеты проводят с целью определить и оптимизировать гидравлические (аэродинамические) потери давления в теплообменнике, а также подсчитать энергетические затраты на их преодоление. Расчет любого тракта, канала или трубы для прохода теплоносителя ставит перед человеком первостепенную задачу - интенсифицировать процесс теплообмена на данном участке. То есть одна среда должна передать, а другая получить как можно больше тепла на минимальном промежутке его течения. Для этого часто применяют дополнительную поверхность теплообмена, в виде развитого оребрения поверхности (для отрыва пограничного ламинарного подслоя и усиления турбулизации потока). Оптимальное балансовое соотношение гидравлических потерь, площади теплообменной поверхности, массогабаритных характеристик и снимаемой тепловой мощности является результатом совокупности теплового, гидравлического и конструктивного расчета ТОА.

Поверочный расчет

Поверочный расчет теплообменника проводят в случае, когда надо заложить запас по мощности либо по площади теплообменной поверхности. Поверхность резервируют по разным причинам и в разных ситуациях: если так требуется по техзаданию, если производитель решает внести дополнительный запас для того, чтобы быть точно уверенным в том, что такой теплообменник выйдет на режим, и минимизировать ошибки, допущенные при расчетах. В каких-то случаях резервирование требуется для округления результатов конструктивных размеров, в других же (испарители, экономайзеры) в расчет мощности теплообменника специально вводят запас по поверхности, на загрязнение компрессорным маслом, присутствующим в холодильном контуре. Да и низкое качество воды необходимо принимать во внимание. Через некоторое время бесперебойной работы теплообменников, особенно при высоких температурах, накипь оседает на теплообменной поверхности аппарата, снижая коэффициент теплопередачи и неминуемо приводя к паразитному снижению теплосъёма. Поэтому грамотный инженер, проводя расчет теплообменника «вода-вода», уделяет особое внимание дополнительному резервированию поверхности теплообмена. Поверочный расчет также проводят для того, чтобы посмотреть, как выбранное оборудование будет работать на иных, вторичных режимах. Например, в центральных кондиционерах (приточных установках) калориферы первого и второго подогрева, использующиеся в холодный период года, нередко задействуют и летом для охлаждения поступающего воздуха, подавая в трубки воздушного теплообменника холодную воду. Как они будут функционировать и какие будут выдавать параметры, позволяет оценить поверочный расчет.

тепловой расчет пластинчатого теплообменника

Исследовательские расчеты

Исследовательские расчеты ТОА проводят на основе полученных результатов теплового и поверочного расчетов. Они необходимы, как правило, для внесения последних поправок в конструкцию проектируемого аппарата. Их также проводят с целью корректировки каких-либо уравнений, закладываемых в реализуемой расчетной модели ТОА, полученной эмпирическим путём (по экспериментальным данным). Выполнение исследовательских расчетов предполагает проведение десятков, а иногда и сотен вычислений по специальному плану, разработанному и внедрённому на производстве согласно математической теории планирования экспериментов. По результатам выявляют влияние различных условий и физических величин на показатели эффективности ТОА.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

конструктивный расчет теплообменника

Типы конструкции теплообменников

Рекуперативные ТОА по конструкции можно разделить на достаточно большое количество групп. Самые известные и широко применяемые – это пластинчатые теплообменники, воздушные (трубчатые оребрённые), кожухотрубные, теплообменники "труба в трубе", кожухо-пластинчатые и другие. Существуют и более экзотические и узкоспециализированные типы, например, спиральные (теплообменник-улитка) или скребковые, которые работают с вязкими или неньютоновскими жидкостями, а также многие другие типы.

Теплообменники «труба в трубе»

Рассмотрим самый простой расчет теплообменника «труба в трубе». Конструктивно данный тип ТОА максимально упрощен. Во внутреннюю трубу аппарата пускают, как правило, горячий теплоноситель, для минимизации потерь, а в кожух, или в наружную трубу, запускают охлаждающий теплоноситель. Задача инженера в этом случае сводится к определению длины такого теплообменника исходя из рассчитанной площади теплообменной поверхности и заданных диаметров.

расчет пластинчатого теплообменника

Здесь стоит добавить, что в термодинамике вводится понятие идеального теплообменника, то есть аппарата бесконечной длины, где теплоносители работают в противотоке, и между ними полностью срабатывается температурный напор. Конструкция «труба в трубе» ближе всего удовлетворяет этим требованиям. И если запустить теплоносители в противотоке, то это будет так называемый «реальный противоток» (а не перекрёстный, как в пластинчатых ТОА). Температурный напор максимально эффективно срабатывается при такой организации движения. Однако выполняя расчет теплообменника «труба в трубе», следует быть реалистами и не забывать о логистической составляющей, а также об удобстве монтажа. Длина еврофуры - 13,5 метров, да и не все технические помещения приспособлены к заносу и монтажу оборудования такой длины.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

тепловой расчет теплообменника

Воздушные теплообменники

Один из самых распространённых на сегодняшний день теплообменных аппаратов – это трубчатые оребрённые теплообменники. Их ещё называют змеевиками. Где их только не устанавливают, начиная от фанкойлов (от англ. fan + coil, т.е. "вентилятор" + "змеевик") во внутренних блоках сплит-систем и заканчивая гигантскими рекуператорами дымовых газов (отбор теплоты от горячего дымового газа и передача его на нужды отопления) в котельных установках на ТЭЦ. Вот почему расчет змеевикового теплообменника зависит от того применения, куда этот теплообменник пойдёт в эксплуатацию. Промышленные воздухоохладители (ВОПы), устанавливаемые в камерах шоковой заморозки мяса, в морозильных камерах низких температур и на других объектах пищевого холодоснабжения, требуют определённых конструктивных особенностей в своём исполнении. Расстояния между ламелями (оребрением) должно быть максимальным, для увеличения времени непрерывной работы между циклами оттайки. Испарители для ЦОДов (центров обработки данных), наоборот, делают как можно более компактными, зажимая межламельные расстояния до минимума. Такие теплообменники работают в «чистых зонах», окруженные фильтрами тонкой очистки (вплоть до класса HEPA), поэтому такой расчет трубчатого теплообменника проводят с упором на минимизацию габаритов.

Пластинчатые теплообменники

В настоящее время стабильным спросом пользуются пластинчатые теплообменники. По своему конструктивному исполнению они бывают полностью разборными и полусварными, меднопаяными и никельпаяными, сварными и спаянными диффузионным методом (без припоя). Тепловой расчет пластинчатого теплообменника достаточно гибок и не представляет особой сложности для инженера. В процессе подбора можно играть типом пластин, глубиной штамповки каналов, типом оребрения, толщиной стали, разными материалами, а самое главное – многочисленными типоразмерными моделями аппаратов разных габаритов. Такие теплообменники бывают низкими и широкими (для парового нагрева воды) или высокими и узкими (разделительные теплообменники для систем кондиционирования). Их часто используют и под среды с фазовым переходом, то есть в качестве конденсаторов, испарителей, пароохладителей, предконденсаторов и т. д. Выполнить тепловой расчет теплообменника, работающего по двухфазной схеме, немного сложнее, чем теплообменника типа «жидкость-жидкость», однако для опытного инженера эта задача разрешима и не представляет особой сложности. Для облегчения таких расчетов современные проектировщики используют инженерные компьютерные базы, где можно найти много нужной информации, в том числе диаграммы состояния любого хладагента в любой развёртке, например, программу CoolPack.

Пример расчета теплообменника

Основной целью проведения расчета является вычисление необходимой площади теплообменной поверхности. Тепловая (холодильная) мощность обычно задается в техзадании, однако в нашем примере мы рассчитаем и её, для, скажем так, проверки самого техзадания. Иногда бывает и так, что в исходные данные может закрасться ошибка. Одна из задач грамотного инженера - эту ошибку найти и исправить. В качестве примера выполним расчет пластинчатого теплообменника типа «жидкость - жидкость». Пусть это будет разделитель контуров (pressure breaker) в высотном здании. Для того чтобы разгрузить оборудование по давлению, при строительстве небоскрёбов очень часто применяется такой подход. С одной стороны теплообменника имеем воду с температурой входа Твх1 = 14 ᵒС и выхода Твых1 = 9 ᵒС, и с расходом G1 = 14 500 кг/ч, а с другой - тоже воду, но только вот с такими параметрами: Твх2 = 8 ᵒС, Твых2 = 12 ᵒС, G2 = 18 125 кг/ч.

конструктивный расчет теплообменника

Необходимую мощность (Q0) рассчитаем по формуле теплового баланса (см. рис. выше, формула 7.1), где Ср – удельная теплоёмкость (табличное значение). Для простоты расчетов возьмём приведённое значение теплоёмкости Срв = 4,187 [кДж/кг*ᵒС]. Считаем:

Q1 = 14 500 * (14 - 9) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по первой стороне и

Q2 = 18 125 * (12 - 8) * 4,187 = 303557,5 [кДж/ч] = 84321,53 Вт = 84,3 кВт – по второй стороне.

Обратите внимание, что, согласно формуле (7.1), Q0 = Q1 = Q2, независимо от того, по какой стороне проведён расчет.

Далее по основному уравнению теплопередачи (7.2) находим необходимую площадь поверхности (7.2.1), где k – коэффициент теплопередачи (принимаем равным 6350 [Вт/м2]), а ΔТср.лог. – среднелогарифмический температурный напор, считаемый по формуле (7.3):

ΔТ ср.лог. = (2 - 1) / ln (2 / 1) = 1 / ln2 = 1 / 0,6931 = 1,4428;

F то = 84321 / 6350 * 1,4428 = 9,2 м2.

В случае когда коэффициент теплопередачи неизвестен, расчет пластинчатого теплообменника немного усложняется. По формуле (7.4) считаем критерий Рейнольдса, где ρ – плотность, [кг/м3], η – динамическая вязкость, [Н*с/м2], v – скорость среды в канале, [м/с], d см – смачиваемый диаметр канала [м].

По таблице ищем необходимое нам значение критерия Прандтля [Pr] и по формуле (7.5) получаем критерий Нуссельта, где n = 0,4 – в условиях нагрева жидкости, и n = 0,3 – в условиях охлаждения жидкости.

Далее по формуле (7.6) вычисляется коэффициент теплоотдачи от каждого теплоносителя к стенке, а по формуле (7.7) считаем коэффициент теплопередачи, который и подставляем в формулу (7.2.1) для вычисления площади теплообменной поверхности.

В указанных формулах λ – коэффициент теплопроводности, ϭ – толщина стенки канала, α1 и α2 – коэффициенты теплоотдачи от каждого из теплоносителей стенке.

fb.ru