По условиям работы сваи в грунте сваи делятся на сваи-стойки и висячие сваи. Сваи-стойки передают нагрузку на практически несжимаемые породы (скальные и полускальные, сланцы, мергели, очень плотные грунты). Их вертикальные перемещения ничтожны, силы трения по боковой поверхности не развиваются и в расчете не учитываются. Несущая способность таких свай зависит от сопротивления грунтов, залегающих под нижним концом свай (Fd=Rs). Рисунок6.10: Расчетная схема к определению несущей способности одиночной сваи ziглубина до середины слоя грунта, для которого определяется сопротивление на боковой поверхности; hiтолщинаi-го слоя грунта;hполная глубина погружения сваи Несущую способность Fd(кН) висячей забивной сваи, работающей на сжимающую нагрузку, следует определять как сумму сил расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле: (6.27) где с=1 – коэффициент условий работы сваи в грунте; R– расчетное сопротивление грунта под нижним концом сваи, определяемое по Таблица 6 .20; А– площадь опирания на грунт сваи, принимаемая по площади поперечного сечения сваи брутто; u– наружный периметр поперечного сечения сваи, м; fi– расчетное сопротивлениеi-го слоя грунта основания на боковой поверхности сваи, определяемое по Таблица 6 .21; hi– толщинаi-го слоя грунта, соприкасающегося с боковой поверхностью, м; cRиcf– коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние способа погружения на расчетные сопротивления грунта, определяемые по Таблица 6 .22 и принимаемые независимо друг от друга. Для того, чтобы воспользоваться предложенной формулой необходимо вычертить расчетную схему сваи на фоне геологического разреза (Рисунок 6 .10). Грунтовую толщу в пределах сваи разбивают на элементарные однородные слои, мощность которых не должна превышать 2м. При этом на уровень грунтовых вод внимания не обращать, а растительный слой не учитывать. Рекомендуемая схема разбивки геологическогих слоев на элементарные: 2м+…+2м+остаток. Таблица6.20 Расчетное сопротивление под нижним концом сваи Глуби-на погру-жения нижне-го конца сваи, м Расчетное сопротивление под нижним концом забивных свай и свай-оболочек, погруженных без выемки грунта, R, кПа песчаных грунтов средней плотности граве-листых круп-ных сред-ней круп-ности мелких пылеватых пылевато-глинистых грунтов при показателе текучести IL, равном 0 0,1 0,2 0,3 0,5 0,6 3 7500 6000 4000 3000 3100 2000 2000 1200 1100 600 4 8300 6800 5100 3800 3200 2500 2100 1600 1250 700 5 8800 7000 6200 4000 3400 2800 2200 2000 1300 800 7 9700 7300 6900 4300 3700 3300 2400 2200 1400 850 10 10500 7700 7300 5000 4000 3500 2600 2400 1500 900 15 11700 8200 7500 5600 4400 4000 2900 1650 1000 20 12600 8500 6200 4800 4500 3200 1800 1100 25 13400 9000 6800 5200 3500 1950 1200 30 14200 9500 7400 5600 3800 2100 1300 35 15000 10000 8000 6000 4100 2250 1400 См. примечания к Таблица 6 .22 Таблица6.21 Расчетные сопротивления на боковой поверхности забивных свай. Средняя глубина располо-жения слоя грунта ,м Расчетные сопротивления на боковой поверхности забивных свай и свай-оболочек fi , кПа песчаных грунтов средней плотности круп-ных и средней круп-ности мел-ких пылеватых пылевато-глинистые грунты с показателем текучести IL, равном 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1 2 3 4 5 6 8 10 15 20 25 30 35 35 42 48 53 56 58 62 65 72 79 86 93 100 23 30 35 38 40 42 44 46 51 56 61 66 70 15 21 25 27 29 31 33 34 38 41 44 47 50 12 17 20 22 24 25 26 27 28 30 32 34 36 8 12 14 16 17 18 19 19 20 20 20 21 22 4 7 8 9 10 10 10 10 11 12 12 12 13 4 5 7 8 8 8 8 8 8 8 9 9 3 4 6 7 7 7 7 7 7 7 7 8 8 2 4 5 5 6 6 6 6 6 6 6 7 7 См. примечания к Таблица 6 .22 Таблица6.22 Коэффициенты условий работы для расчета несущей способности забивных свай Способы погружения забивных свай и свай-оболочек, погружаемых без выемки грунта Коэффициенты условий работы грунта при расчете несущей способности свай Под нижним концом сR На боковой поверхности cf 1. Погружение сплошных и полых с закрытым нижним концом свай механическими (подвесными) паровоздушными и дизельными молотами 1,0 1,0 Погружение забивкой и вдавливанием в предварительно пробуренные лидерные скважины cзаглублением концов свай не менее 1м ниже забоя скважины при ее диаметре: а) равной стороне квадратной сваи б) на 0,05м менее стороны квадратной сваи в) на 0,15м меньше стороны квадратной или диаметра круглой сваи 1,0 1,0 1,0 0,5 0,6 1,0 1,0 0,9 Вибропогружение свай-оболочек, вибропогружение и вибровдавливание свай в грунты: а) песчаные средней плотности: крупные и средней крупности мелкие пылеватые б) пылевато-глинистые с показателем текучести IL=0,5: супеси суглинки глины в) пылевато-глинистые с показателем текучести IL0 1,2 1,1 1,0 0,9 0,8 0,7 1,0 1,0 1,0 1,0 0,9 0,9 0,9 1,0 Погружение вдавливанием сплошных свай: а) в пески средней плотности, крупные, средней крупности и мелкие б) в пески пылеватые в) пылевато-глинистые грунты с показателем текучести IL0 г) то же IL>0 1,1 1,1 1,1 1,0 1,0 0,8 1,0 1,0 Примечания: В случаях, когда в Таблица 6 .20 значения Rуказаны дробные, числитель относится к пескам, а знаменатель – к глинам. В Таблица 6 .20 и Таблица 6 .21 глубину погружения нижнего конца сваи и среднюю глубину расположения слоя грунта при планировке территории срезкой, подсыпкой, намывом до 3м следует принимать от уровня природного рельефа, а при срезке, подсыпке, намыве от 3 до 10м – от условной отметки, расположенной соответственно на 3м выше уровня срезки или на 3м ниже уровня подсыпки. Для промежуточных глубин погружения свай и свай-оболочек и промежуточных значений текучести ILпылевато-глинистых грунтов значенияRиfiопределяются интерполяцией. Для плотных песчаных грунтов, степень плотности которых определена по материалам статического зондирования, значения по Таблица 6 .20 для свай, погруженных без использования подмыва или лидерных скважин, следует увеличивать на 100%. При определении степени плотности грунта по материалам других видов инженерных изысканий и отсутствии данных статического зондирования для плотных песков по Таблица 6 .20 следует увеличить на 60%, но не более чем до 20МПа. Значения расчетных сопротивлений Rпо Таблица 6 .20 допускается использовать при условии, если заглубление сваи в неразмываемый и несмываемый грунт составляет не менее 3м. Значения расчетного сопротивления Rпод нижним концом забивных свай сечением 0,15х0,15м и менее, используемых в качестве фундаментов под внутренние перегородки одноэтажных производственных зданий, допускается повышать на 20%. Для забивных свай, опирающихся нижним концом на рыхлые песчаные грунты или на пылевато-глинистые грунты с показателем текучести IL>0,6, несущую способность следует определять по результатам статических испытаний свай. При определении по Таблица 6 .21 расчетных сопротивлений грунтов на боковой поверхности свай-оболочек и свай fiпласты грунтов следует расчленять на однородные слои толщиной не более 2м. Значения расчетного сопротивления плотных песчаных грунтов на боковой поверхности свай fiследует увеличивать на 30% против значений, приведенных в Таблица 6 .21. Расчетные сопротивления супесей и суглинков с коэффициентом пористости e<0,5 и глин с коэффициентом пористостиe<0,6 следует увеличивать на 15% против значений, приведенных в Таблица 6 .21 при любых значениях показателя текучести. studfiles.net Расчет несущей способности сваи – это одна из важнейших задач, которая стоит перед специалистом, занимающимся проектированием фундамента свайного типа. С одной стороны, использование недостаточно прочных элементов приведет к понижению механических характеристик основания. С другой же стороны, необходимо принимать во внимание экономический аспект, ведь за каждую сваю, установленную «про запас», нужно платить. В нашей статье мы приведем краткий обзор методов, по которым провидится расчет механических характеристик опорных конструкций, а также продемонстрируем несколько примеров вычислений. Несущая способность — один из важнейших параметров Калькулятор расчета несущей способности винтовых свай. Расчет несущей способности сваи
Расчет несущей способности одиночной сваи
Расчет несущей способности сваи, пример, методы, определение прочности буронабивных свайных элементов и ТИСЭ своими руками, устойчивость опор по грунту, инструкция, фото и видео-уроки, цена
Общие положения
Реклама
Большинством инженеров несущая способность свай определяется наименьшим значением из двух параметров:
Поскольку оба эти фактора воздействуют на конструкцию одновременно, то именно наименьшая величина является той критической точкой, которая определяет предел нагрузки на отдельный элемент фундамента. Проще говоря, не важно, что первым начнет деформироваться – опора или грунт, в любом случае целостность конструкции будет под угрозой.
Сопротивление, воздействующее на вертикальную опору
Если говорить об идеальном соотношении, то несущая способность сваи по материалу должна быть равна этому же параметру по грунту. Естественно, реализовать это на практике практически нереально, потому при проектировке фундаментов стараются, чтобы указанные значения были максимально близкими.
Обратите внимание! Чем сильнее отличаются несущая способность сваи по грунту и по материалу, тем не менее, проект свайного фундамента является эффективным с экономической точки зрения.
На сегодняшний день существует несколько методик, позволяющих подобрать оптимальное соотношение механических характеристик опор для того или иного грунта.
В зависимости от сложности объекта и поставленных перед проектировщиками задач, методы определения несущей способности свай могут использоваться как по отдельности, так и в комплексе:
Фото в процессе испытания
Как правило, при масштабных строительных работах определение несущей способности сваи выполняется с помощью нескольких дублирующих методов. Мы же попробуем воспользоваться расчетными технологиями, и проанализируем, как можно вычислить механические характеристики свай разного типа.
Устройство для зондирования грунта
В качестве одного из примеров возьмем буронабивную конструкцию.
Конструкция буронабивных свайных фундаментов представляет собой заглубленную в грунт систему, основу которой составляет обсадная труба, заполненная бетоном. Сваи данного типа применяются при повышенных эксплуатационных нагрузках, потому их диаметр может доходить до 1,5 м, а глубина – до 40 м.
Создание буронабивной конструкции
Расчет несущей способности буронабивной сваи чаще всего приходится осуществлять на основании данных так называемого статистического зондирования – обязательного испытания для грунтов, на которых планируется возведение фундамента свайного типа.
Пример расчета несущей способности сваи в одной из точек зондирования приводится ниже.
Для расчета используется формула:
Fdu= R*А + u*Σ γcf∙fi∙hi, где:
Обратите внимание! При сухой бетонировке свай коэффициент γcf принимается равным единице.
Начинаем расчет:
Подставив полученные данные в формулу, получаем:
Fdu = 794 * 0,5 + 2,5 * 222 = 952 кН = 95,2 т.
Именно такую нагрузку может выдержать буронабивная свая в данных условиях.
Данные статистического зондирования
Также несущая способность буронабивной сваи влияет на количество элементов в кусте под конкретной деталью конструкции.
Формула расчета имеет следующий вид:
n = N∙γn * γk/(Fd∙ γ0), где:
В результате:
n = 250 * 1,15 * 1,25 / (95,2 * 1,15) = 3,28 шт.
Следовательно, каждый куст должен содержать не менее четырех свай заданного типа.
Обратите внимание! Данная инструкция содержит условные табличные значения. Если вы будете осуществлять вычисления своими руками, то вам следует ориентироваться на результаты статистического зондирования именно вашего участка.
Отдельную категорию опор для капитального строительства составляют так называемые сваи ТИСЭ. Они представляют собой вертикальные столбы, в нижней части которых находится расширенная площадка.
Система ТИСЭ: конструкция и размеры
Глубина расположения опор определяется уровнем промерзания грунта. Для обеспечения сохранения формы опорной конструкции используются буры с оголовками особой формы, а также специальные опалубки.
Несущая способность сваи ТИСЭ рассчитывается с учетом массы возводимого здания, а также характеристик грунта, в который заглубляется фундамент. Поскольку наиболее часто в подобных основаниях используются опоры диаметром 600 мм, то именно они и будут рассматриваться в таблице ниже:
Особенности грунтового основания (тип почвы) | Расчетное сопротивление основания, кг/м2 | Несущая способность опоры ТИСЭ диаметром 600 мм, т. |
Глина | 6,0 | 17,00 |
Суглинок средний и тяжелый | 3,0 | 8,40 |
Супесчаный грунт | 3,0 | 8,40 |
Песчаный грунт с примесями пылеватой фракции | 2,0 | 5,60 |
Среднепесчаный грунт | 5,0 | 14,00 |
Крупнопесчаный грунт | 6,0 | 17,00 |
Приведенная таблица может использоваться при проектировании любых жилых зданий и сооружений. При этом следует помнить, что ключевым моментом является верное определение гранулометрического состава грунта (т.е. соотношения в нем глинистых и песчаных частиц), а также – вычисление сопротивления грунтового основания.
Силы, воздействующие на расширенное основание
Рассчитав несущую способность одной опоры ТИСЭ, мы сможем без труда вычислить минимальное количество таких опор, необходимых для обеспечения максимальной надежности возводимой конструкции заданной массы.
Естественно, столь сложные вычисления под силу далеко не каждому, да и разобраться во всех тонкостях документов может исключительно специалист. Именно для этого и существуют программы, которые позволяют оптимизировать процесс вычисления механических характеристик опорных элементов для фундамента.
Пример использования программы
Данные программы обладают вполне доступным для понимания интерфейсом, что существенно облегчает работу даже неопытному пользователю компьютера. Но следует, все же, отметить, что по сложности они многократно превосходят широко распространенные в сети онлайн-калькуляторы, и для получения максимально объективной информации теоретическая подготовка, однако, понадобится.
Но если выбирать между «высшей математикой» формул СНиП и программой, облегчающей работу – то последняя находится вне всякой конкуренции»
Выполненный по всем правилам расчет несущей способности свай, представляет собой достаточно сложную процедуру. Браться за нее «с наскока» не стоит, так как для полного понимания всех механизмов, влияющих на характеристику опор, нужно обладать солидным багажом знаний.
И все же время, которое потребуется на изучение данного материала, ни в коем случае не будет потрачено зря, ведь от правильного расчета зависит не только экономическая эффективность стройки, но и безопасность вашего дома.
В представленном видео в этой статье вы найдете дополнительную информацию по данной теме (узнайте также как делают фундамент на буронабивных сваях с монолитным ростверком).
ofundamentah.com
Поиск
Фундаменты от А до Я.fundamentaya.ru
Поиск
Фундаменты от А до Я.fundamentaya.ru
Если для строительства дома выбирается свайно-винтовой фундамент, то необходимо определиться и с типоразмером опор, и с их количеством, которое будет способно обеспечивать стабильность планируемой постройки. Так как многие владельцы загородных участков принимают решение о проведении самостоятельного строительства на таком фундаменте, есть смысл помочь им в проведении хотя бы предварительных расчетов.
Калькулятор расчета несущей способности винтовых свай
Наверное, понятно, что общее количество опор зависеть от суммарной нагрузки, которой здание оказывает на фундамент. Ее необходимо равномерно распределить по сваям, так, чтобы не превысить допустимую нагрузку на каждую из них, чтобы здание не начало «тонуть» в грунте. И вот для этого требуется узнать возможности такой точки опоры. А поможет нам в этом калькулятор расчета несущей способности винтовых свай.
Ниже будут приведены некоторые пояснения по порядку проведения вычислений.
Содержание статьи
Чаще всего в частном строительстве используются недорогие, но достаточно надежные сваи со сварными лопастями, модельного ряда СВС (свая винтовая сварная). Этот модельный ряд включает несколько типоразмеров, которые применятся в зависимости от вида планируемой постройки – от лёгких заборов до полноценных загородных домов.
Для возведения жилых и хозяйственных построек обычно применяются сваи от СВС-89 и крупнее (число показывает диаметр трубы). Соответственно, с повышением диаметра трубы увеличивается и размер лопастей винтовой части, то есть, про сути – площадь опоры сваи на грунт. Эти размерные параметры свай уже внесены в программу расчета.
Каждый тип грунта обладает собственным сопротивлением нагрузке, или, иначе говоря, несущей способностью, выражаемой в килограммах на квадратный сантиметр. Таким образом, определив тип грунта на планируемой глубине залегания лопастей сваи, и зная их площадь, несложно вычислить и несущую способность опоры.
Сопротивления грунтов на глубине залегания от 1.5 и ниже – уже внесены в программу расчета.
Безусловно, должен быть предусмотрен и эксплуатационный резерв несущей способности опоры. Для этого вводится поправочный коэффициент. И вот здесь есть нюансы:
Итоговый результат несущей способности сваи будет получен в килограммах и тоннах. Определив этот параметр и располагая значение общей нагрузки от здания на фундамент, несложно определиться и с количеством свай.
Планирование свайного фундамента – как провести самостоятельно?
Чтобы не столкнуться в процессе эксплуатации здания с проблемами проседания или перекоса свайного фундамента, необходимо учитывать немало нюансов. Подробнее об этих важных вопросах – в специальной публикации портала, посвященной расчету количества свай.
stroyday.ru
В силу некоторых особенностей земельных участков (проблемная структура грунта, наличие уклона или плотность возведения сооружений) при строительстве не всегда есть возможность поставить фундамент желаемого типа. В таких случаях оптимальный вариант – буронабивной фундамент с ростверком, который становится все популярнее благодаря многим его преимуществам.
Cхема буронабивных свай.
В некоторых случаях при сооружении жилых зданий нет возможности устанавливать ленточный фундамент. Например, из-за наличия вблизи уже возведенных зданий или коммуникационных узлов. Такая проблема особенно актуальна в населенных пунктах, где площади участков небольшие и каждый владелец пытается возле дома разместить максимальное количество построек. Разрешить ситуацию так, чтобы не принести вреда основаниям уже существующих сооружений, позволяет использование буронабивного фундамента на сваях. При его сооружении есть возможность проводить все процессы с максимальной точностью. Кроме того, уровень вибрационных колебаний в процессе работы минимальный, что предотвращает разрушительное влияние на размещенные поблизости постройки.
Преимущества использования свай при сооружении фундамента:
Стоит отметить, что несущая способность буронабивного фундамента не уступает ленточному или монолитному.
Еще одна особенность использования свай – заливка прямо на месте строительства. К проблематике сооружения такого фундамента можно отнести только бурение скважин для заливки, которые вырыть с помощью техники возможно не всегда, и вся работа проводится вручную.
Фото буронабивных свай
Перед началом строительства нужно совершить расчет несущей способности и выбрать материал изготовления, который напрямую будет влиять на показатели будущего основания.
Просто недопустимо выпускать из виду этот показатель в ситуациях, когда планируется сооружать здание на основании из свай. От него напрямую зависит количество используемых материалов и количество столбов, которые будет необходимо использовать при строительстве.
Таблица несущей способности свай
Несущая способность свай, на которые действует вертикальная нагрузка, зависит от уровня сопротивления основания (влияют используемые материалы), а также показатель сопротивляемости грунта. Чтобы провести расчет несущей способности свай, можно воспользоваться формулой:
Несущая способность = 0.7 КФ х (Нс х По х Пс х 0.8 Кус х Нсг х Тсг)
КФ – коэфф. однородности грунта.
Нс – нижнее сопротивление грунта.
По – площадь опирания столба (м2).
Пс – периметр столба (м).
Кус – коэффициент условий работы.
Нсг – нормативное сопротивление грунта боковой поверхности.
Тсг – толщина слоя грунта (м).
Для поиска некоторых значений можно использовать СНиП 2.02.03-85 (там содержится каждая необходимая таблица).
Проводя расчет несущей способности, также нужно учитывать размер столба. Как пример, столб диаметром 30 см выдерживает 1700 кг, а свая толщиной 50 см – уже целых 5000 кг. Это говорит об большом влиянии каждого сантиметра на уровень нагрузки, который будет выдерживать диаметр.
Таблица сопротивления свайных столбов в зависимости от глубины погружения
Кроме размеров свай, проводя расчет нужно учитывать и материал. Как и в других типах фундаментов, большое значение имеет класс бетона.
Таблица приблизительной стоимости свайного фундамента
Как пример, использование бетона В 7,5 может позволить основанию выдерживать нагрузку в 100 кг на 1 см2. Это достаточно большой показатель.
Буронабивное основание собирается непосредственно на участке. В сваях заключается его основная особенность – именно они берут на себя всю нагрузку будущего сооружения. Чтобы провести расчет установки, нужно узнать глубину промерзания земли и провести монтаж так, чтобы подошва столба находилась ниже этой отметки.
Обязательно проводится гидроизоляция опор с помощью рубероида, устеленного 2 слоями. Верхние части столбов соединяются с помощью ростверка и от ее типа зависит вид основания: заглубленный или висячий.
С целью предотвращения вспучивания на участке ростверки висячего типа устанавливаются от поверхности земли на отдалении около 10 см. Когда ростверк будет погружен в землю – его называют заглубленным (вкапывается на 20 см и больше). Если основание сооружалось на сваях и использовался ростверк, оно способно выдерживать 1.5 Т.
Таблица для расчета бокового сопротивления опор
Алгоритм сооружения:
При бетонировании необходимо постоянно размешивать раствор. Это позволит добиться большей прочности основания: выйдет воздух и бетон будет более плотным.
Буронабивной фундамент – отличное и экономичное решение для возведения сооружений, не уступающее прочностными показателями, как пример, тому же ленточному основанию, а также позволяющее провести работу быстро.
rfund.ru
Расчет несущей способности бутобетонной буронабивной сваи. Несущую способность буронабивных бутобетонных свайных фундаментов, воспринимающих вертикальную сжимающую нагрузку, определяют исходя из сопротивления материала фундамента и сопротивления грунта основания (под нижним концом и на боковой поверхности сваи), принимая меньшее из двух значений. Несущая способность буронабивной сваи глубиной от 1,5 м до 3 м по грунту, работающей на осевую сжимающую нагрузку (Р), определяется по формуле: P несущая способность сваи = 0,7 коэфф. однородности грунта х (Rн нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li - толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м) Rн - нормативное сопротивление грунта в тоннах под нижним концом сваи, принимается по таблицам №№1, 2, 3; fiн - нормативное сопротивление грунта на боковой поверхности ствола сваи, т/м2, принимаемается по таблице №4. При разных слоях грунта на глубине залегания сваи сумма сопротивления грунта на боковой поверхности сваи рассчитывается отдельно для каждого слоя грунта и полученный результат умножается на периметр сваи. |
Таблица №3 Нормативные сопротивления глинистых грунтов в плоскости нижних концов бутобетонных буронабивных свай.
Таблица №4 Нормативные сопротивления грунтов на боковой поверхности буронабивных свай.
|
Таблица. Признаки визуального определения консистенции глинистых грунтов в поле *
* Указания по инженерно-геологическим обследованиям при изысканиях автомобильных дорог. М.-1963г.- Приложение №1 Пример ориентировочного расчета свайного фундамента на буронабивных сваях . Требуется рассчитать расстояние между висячими (без опоры на скальные грунты) буронабивными короткими сваями (до 3 м) под здание с центрально приложенной вертикальной расчетной нагрузкой Np = 5,5 т/погонный метр. Грунтовые условия, по данным инженерно-геологических изысканий представлены суглинками, залегающими с поверхности земли до глубины 3 м. Причем, до глубины 2 м – залегают суглинки тугопластичные, а с глубины 2м до 3 м - суглинки полутвердые. Далее, до глубины 9,2 м - пески крупные, плотные влажные. Грунтовые воды находятся на глубине 9,2 м от поверхности. Буровая скважина сухая. Схема: Грунтовые условия и глубина буронабивных свай, расчет которых необходимо произвести. |
Принимаем размеры свай (вариант A): диаметр буронабивной сваи d = 0,5 м; длина буронабивной сваи l = 3,0 м. Нагрузка, приходящаяся на одну сваю составляет x метров (шаг свай) х 5,5 тонн (нагрузка на погонный метр фундамента ). Несущую способность набивных свай исходя из грунтовых условий рассчитывают по формуле P несущая способность сваи = 0,7 коэфф. однородности грунта х (Rн нормативное сопротивление грунта под нижним концом сваи х F площадь опирания сваи (м2) + u периметр сваи (м) х 0,8 коэфф. условий работы х fiн нормативное сопротивление грунта на боковой поверхности ствола сваи х li - толщина несущего слоя грунта, соприкасающегося с боковой поверхностью сваи (м) В плоскости нижних концов свай залегает крупный песок, плотный влажный с несущей способностью Rн = 70 т/м2. Площадь сечения (основания) круглой сваи составляет S= 3,14 D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; В глинах и в скважинах с водой коэффициент работы сваи вместо 0,8 принимается равным 0,6. (Таблица 7.5 СП 50-102-2003 Проектирование и устройство свайных фундаментов). Нормативное сопротивление грунта на боковой поверхности ствола, принимаемое по табл., составит:
Несущая способность сваи по грунту будет:Р = 0,7 х 1 [70 х 0,196 + 1,57 х 0,8 (1,2 х 2 + 4,2 х 1)] = 15,4 т. Минимально допустимый шаг свай составит 15,4 тонны / 5,5 тонн/м =2,8 метра. Разумно достаточным будет использование шага между сваями 2,5 метра. Посмотрим, как изменится несущая способность сваи по грунту при уменьшении диаметра сваи до 40 см (вариант Б): Площадь сечения (основания) круглой сваи составляет S= 3,14 D2/4 S= 3,14 х 0,2 / 4 = 0,16/4 = 0,125 м2 Периметр сваи u = 3,14 D = 3,14 x 0,4 = 1,25 м; Несущая способность по грунту сваи диаметром 40 см составит: Р = 0,7 х 1 [70 х 0,125 + 1,25 х 0,8 (1,2 х 2 + 4,2 х 1)] = 10,7 т. Такие сваи придется ставить через 2 метра. Посмотрим, как изменится несущая способность сваи диаметром 50 см при уменьшении глубины ее заложения с 3 до 2-х метров (вариант В): При глубине заложения на 2 метра, буронабивная свая будет опираться на слой полутвердого суглинка, а боковые поверхности ствола сваи будут соприкасаться с 2 метровым слоем тугопластичного суглинка. В плоскости нижних концов свай залегает полутвердый суглинок, с несущей способностью Rн = 36 т/м2. Площадь сечения (основания) круглой сваи составляет S= 3,14D2/4 S= 3,14 х 0,25 / 4 = 0,785/4 = 0,196 м2 Периметр сваи u = 3,14 D = 3,14 x 0,5 = 1,57 м; Дополнительный коэффициент условий работы mf = 0,8; Нормативное сопротивление грунта на боковой поверхности ствола для тугопластичного слоя грунта (суглинка) глубиной от 0 до 2 метров (среднее – 1 метр) – нормативное сопротивление грунта на боковой поверхности ствола составит от 1,2 до 2,3 т/м2 (См. строку для грунта на глубине 1 метр). Принимаем самое малое значение сопротивления грунта с запасом 1,2 т/м2 Несущая способность по грунту сваи диаметром 50 см и глубиной 2 метра составит: Р = 0,7 х1 [36 х 0,196 + 1,57 х 0,8 (1,2 х 2) = 7 т. Такие сваи придется ставить уже через 1,2 метра. Из вышеприведенного примера можно сделать два важных вывода:
|
dom.dacha-dom.ru