Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Защемление плиты перекрытия в стене. Плиты перекрытия защемление в стене


Защемление плиты перекрытия в стене

Сразу скажу, что далее будут рассматриваться только однопролетные балки. Для многопролетных неразрезных балок с равными пролетами промежуточные опоры в первом приближении могут рассматриваться как жесткие защемления однопролетных балок.

Чтобы определить, как более правильно рассматривать плиту перекрытия:

а) как однопролетную безконсольную балку,

б) как однопролетную балку с консолями

или в) как жестко защемленную балку:

варианты расчетных схем для плиты балки с опорами на стены

Рисунок 549.1. Возможные расчетные схемы для плиты с опорами на стены: а) безконсольная балка на шарнирных опорах, б) балка с двумя консолями, в) жесткозащемленная балка

следует учесть несколько факторов:

1. Соотношение длины опорного участка к высоте балки

Как правило на первом этапе расчета любая балка рассматривается как некий стержень, высота и ширина поперечного сечения которого пренебрежимо малы по сравнению с длиной. Но в данном случае при определении расчетной схемы высота балки имеет большое значение.

Если длина опорного участка lоп меньше 1/2÷2/3 высоты сечения балки h, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на опорном участке мы имеем дело уже не со стержнем, а с массивным телом. А в массивном теле напряжения распределяются не так, как в стержне (или пластине). Кроме того, такое соотношение параметров явно свидетельствует о том, что длина опорных участков значительно меньше длины пролета.

2. Соотношение длины опорного участка к толщине стены

Когда плиты опираются не на всю толщину стены, а именно так чаще всего и бывает, то при расчетах это следует учитывать.

Если длина опорного участка lоп меньше 1/5÷1/3 толщины стены, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на плиту будет во-первых передаваться не вся нагрузка от вышележащей стены, а только 1/3-1/5 часть. А во-вторых, в результате перераспределения напряжений в материале стены, пластических деформаций или даже частичного разрушения материала стены эта нагрузка может быть еще меньше.

3. Соотношение нагрузки от вышележащей стены к нагрузке на плиту

В малоэтажном частном строительстве, когда имеется всего 2 этажа и соответственно 3 перекрытия, нагрузка от вышележащей стены очень сильно зависит от того, какое именно перекрытие рассматривается.

Так нагрузка от вышележащей стены на перекрытие над 2 этажом будет минимальной. Нагрузка на перекрытие между 1 и 2 этажом от вышележащей стены будет больше, а ее значение зависит от различных факторов, которые будут рассмотрены ниже. Максимальная нагрузка от вышележащей стены будет на перекрытие между подвалом и 1 этажом (или перекрытие по ленточному фундаменту).

Таким образом для плит перекрытий между 2 этажом и чердаком ситуацию возможного защемления плиты в стене в большинстве случаев можно вообще не рассматривать.

Для плит перекрытий между 1 и 2 этажом такая ситуация возможна. Для плит перекрытий под 1 этажом такая ситуация наиболее вероятна.

4. Соотношение модулей упругости материалов плиты и стены

Если модуль упругости материала плиты больше или равен модулю упругости материала стены, то вероятность защемления плиты достаточно высока. Если модуль упругости материала плиты меньше модуля упругости материала стены, то вероятность защемления плиты в стене значительно меньше.

Для наглядности рассмотрим следующий, очень условный пример, когда модули упругости материала стены и плиты примерно одинаковы:

возможные варианты нагрузок на плиту от вышележащей стены, которые могут привести к защемлению

Рисунок 549.2. Возможные варианты нагрузки на плиту от вышележащей наружной стены, которые могут привести к частичному или полному защемлению.

Сразу скажу на данном рисунке показаны далеко не все возможные варианты, а лишь очень малая их часть и только для готовых плит перекрытия, а не монолитных, изготавливаемых непосредственно в процессе строительства дома.

Для монолитных плиты распределение напряжений на опорной площадке будет зависеть от различных факторов, в частности от прогибов опалубки в процессе монтажа. Тем не менее напряжения, возникающие от веса вышележащей стены, можно принимать такими же. Кроме того не учтено возможное перераспределение напряжений в материале стены под действием нагрузок, приложенных с эксцентриситетом (например от плит вышележащих перекрытий). Но продолжим.

а) После монтажа плиты перекрытия на существующую стену (рисунок 549.2.а)) в материале стены на опорной площадке и в материале плиты на опорном участке будут действовать сжимающие нормальные напряжения. В данном случае мы рассматриваем общую ситуацию, поэтому точное значение напряжений нас не интересует, пусть это будут напряжения, равные 0.5σ.

Примечание: так как плита под действием собственного веса уже может иметь некоторый прогиб (а может и не иметь или даже наоборот иметь некоторый строительный подъем, если в плите использована предварительно напряженная арматура), то для упрощения восприятия начальный угол наклона поперечного сечения плиты не показан. К тому же в любом случае при монтаже готовой плиты напряжения под опорным участком плиты будут распределены равномерно при отсутствии других значительных нагрузок на плиту в процессе монтажа.

б) После того, как будет сделана стена над плитой перекрытия, в материале плиты на опорном участке и в материале стены на опорной площадке возникнут дополнительные сжимающие напряжения. На рисунке 549.2.б) показан вариант, когда эти дополнительные сжимающие напряжения равны напряжениям возникшим в процессе монтажа плиты, пусть это тоже будут напряжения равные 0.5 σ. На лицо вроде бы явное защемление на опоре, но не будем торопиться с выводами и посмотрим, что происходит после того когда к плите приложена нагрузка.

Примечание: Вообще-то подобная ситуация наиболее вероятна для плит с относительно длинным опорным участком, длина которого сопоставима с шириной стены. Чем меньше длина опорного участка, тем больше вероятность неравномерного распределения напряжений от вышележащей стены (рассмотрение стены как стойки с шарнирными опорами или жестким защемлением на опорах и соответствующим перераспределением напряжений). Причем это перераспределение будет таким, что минимальное значение напряжений будет в начале опорного участка плиты.

1.а) Если нагрузка на плиту в процессе эксплуатации будет в 1.5 раза больше нагрузки от собственного веса плиты, то напряжения под и над опорным участком плиты распределятся примерно таким образом, как показано на рисунке 549.2.1.а) при соответствующей длине опорного участка. Как видим в этом случае ни о каком защемлении не может быть и речи. Это же можно сказать и о случаях, когда нагрузка на плиту будет еще больше. 

При этом, чем меньше длина опорного участка плиты, тем больше вероятность того, что никакого защемления в стене не будет, однако при этом увеличивается вероятность пластических деформаций в материале стены на опорной площадке, как это показано на рисунке 549.2.1.б). И чем меньше длина опорного участка, тем больше вероятность не только пластических деформаций, но и частичного разрушения материала стены, как это показано на рисунке 549.2.1.в). На этих рисунках проиллюстрирована ситуация, когда предел прочности материала стены не превышает 2σ. Напряжения в материале плиты на опорных участках для упрощения восприятия на данных рисунках не показаны.

В целом для вариантов, показанных на рисунках 549.2.1.а) - в), наиболее соответствующей будет расчетная схема, показанная на рисунке 549.1.а). 

2.а) Если нагрузка на плиту в процессе эксплуатации будет например в 2 раза меньше нагрузки от собственного веса плиты, то при соответствующей длине опорного участка плиты может возникнуть ситуация, показанная на рисунке 549.2.2.а).

В этом случае для приближенных расчетов можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

Примечание: чем меньше длина опорного участка, тем больше вероятность пластических деформаций в материале стены над опорным участком плиты в месте повышенных напряжений из-за их неравномерного распределения. Это место на рисунке показано красной стрелкой. Кроме того сами по себе деформации плиты еще не означают значительного изменения положения нейтральной оси балки - плиты.

2.б) При увеличении длины опорного участка плиты возможна ситуация, показанная на рисунке 549.2.2.б). В данном случае уже можно вести речь о частичном защемлении.

В этом случае для приближенных расчетов также можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

В этом случае также увеличивается риск пластических деформаций под опорным участком плиты.

2.в) Если длина опорного участка значительна, то при определенных условиях может возникнуть ситуация, показанная на рисунке 549.2.2.в).

В этом случае можно пользоваться расчетной схемой показанной на рисунке 549.1.в).

Конечно же при этом в свою очередь требуется сначала определить длину l'.

Как видим, возможных вариантов расчета плиты, точнее действующих на нее нагрузок, очень много. И при таких расчетах следует учитывать влияние множества факторов. В связи с этим возникает вполне логичный вопрос: как поступить человеку, задумавшему построить свой дом в одном экземпляре, к тому же собирающемуся использовать монолитные плиты перекрытия и вообще занимающемуся расчетами первый и последний раз в жизни?

Ответ на данный вопрос будет предельно прост:

В целом плиту перекрытия можно рассчитывать как балку на шарнирных опорах (или плиту опертую по контуру). При этом, если длина опорного участка плиты значительно больше высоты плиты, то в верхней зоне сечения плиты заложить арматуру, исходя из предположения, что на опоре может возникнуть жесткое защемление вышележащей стеной.

Возможно это приведет к некоторому перерасходу материалов (в данном случае арматуры), однако более-менее точный расчет такой плиты может отнять достаточно много времени или денег. По сравнению с этими расходами траты на дополнительную арматуру могут выглядеть смехотворными.

doctorlom.com

Защемление плиты перекрытия в стене

Поиск Лекций
Достаточно часто плиты перекрытия для упрощения расчетов рассматриваются и рассчитываются как однопролетные безконсольные балки на шарнирных опорах. Тем не менее иногда вышележащие стены могут создавать защемление плиты на опорах и влияние этого защемления следует учитывать. В данном случае речь не идет о жестком защемлении плиты перекрытия в стене, так как с точки зрения строительной механики одним из показателей жесткого защемления является нулевой угол поворота поперечного сечения на опоре (поэтому такая опора и рассматривается как жесткая заделка). Тем не менее при достаточно длинных опорных участках плиты, длина которых сопоставима с толщиной стены, поперечные сечения балки действительно могут иметь нулевой угол поворота, но при этом расстояние между такими сечениями будет больше расстояния между стенами, таким образом расчетную длину пролета жестко защемленной балки следует увеличивать. Но обо всем по порядку.
 
Сразу скажу, что далее будут рассматриваться только однопролетные балки. Для многопролетных неразрезных балок с равными пролетами промежуточные опоры в первом приближении могут рассматриваться как жесткие защемления однопролетных балок. Чтобы определить, как более правильно рассматривать плиту перекрытия: а) как однопролетную безконсольную балку, б) как однопролетную балку с консолями или в) как жестко защемленную балку: Рисунок 549.1. Возможные расчетные схемы для плиты с опорами на стены: а) безконсольная балка на шарнирных опорах, б) балка с двумя консолями, в) жесткозащемленная балка следует учесть несколько факторов: 1. Соотношение длины опорного участка к высоте балки Как правило на первом этапе расчета любая балка рассматривается как некий стержень, высота и ширина поперечного сечения которого пренебрежимо малы по сравнению с длиной. Но в данном случае при определении расчетной схемы высота балки имеет большое значение. Если длина опорного участка lоп меньше 1/2÷2/3 высоты сечения балки h, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах. Так как при таких параметрах на опорном участке мы имеем дело уже не со стержнем, а с массивным телом. А в массивном теле напряжения распределяются не так, как в стержне (или пластине). Кроме того, такое соотношение параметров явно свидетельствует о том, что длина опорных участков значительно меньше длины пролета. 2. Соотношение длины опорного участка к толщине стены Когда плиты опираются не на всю толщину стены, а именно так чаще всего и бывает, то при расчетах это следует учитывать. Если длина опорного участка lоп меньше 1/5÷1/3 толщины стены, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах. Так как при таких параметрах на плиту будет во-первых передаваться не вся нагрузка от вышележащей стены, а только 1/3-1/5 часть. А во-вторых, в результате перераспределения напряжений в материале стены, пластических деформаций или даже частичного разрушения материала стены эта нагрузка может быть еще меньше. 3. Соотношение нагрузки от вышележащей стены к нагрузке на плиту В малоэтажном частном строительстве, когда имеется всего 2 этажа и соответственно 3 перекрытия, нагрузка от вышележащей стены очень сильно зависит от того, какое именно перекрытие рассматривается. Так нагрузка от вышележащей стены на перекрытие над 2 этажом будет минимальной. Нагрузка на перекрытие между 1 и 2 этажом от вышележащей стены будет больше, а ее значение зависит от различных факторов, которые будут рассмотрены ниже. Максимальная нагрузка от вышележащей стены будет на перекрытие между подвалом и 1 этажом (или перекрытие по ленточному фундаменту). Таким образом для плит перекрытий между 2 этажом и чердаком ситуацию возможного защемления плиты в стене в большинстве случаев можно вообще не рассматривать. Для плит перекрытий между 1 и 2 этажом такая ситуация возможна. Для плит перекрытий под 1 этажом такая ситуация наиболее вероятна. 4. Соотношение модулей упругости материалов плиты и стены Если модуль упругости материала плиты больше или равен модулю упругости материала стены, то вероятность защемления плиты достаточно высока. Если модуль упругости материала плиты меньше модуля упругости материала стены, то вероятность защемления плиты в стене значительно меньше. Для наглядности рассмотрим следующий, очень условный пример, когда модули упругости материала стены и плиты примерно одинаковы: Рисунок 549.2. Возможные варианты нагрузки на плиту от вышележащей наружной стены, которые могут привести к частичному или полному защемлению. Сразу скажу на данном рисунке показаны далеко не все возможные варианты, а лишь очень малая их часть и только для готовых плит перекрытия, а не монолитных, изготавливаемых непосредственно в процессе строительства дома. Для монолитных плиты распределение напряжений на опорной площадке будет зависеть от различных факторов, в частности от прогибов опалубки в процессе монтажа. Тем не менее напряжения, возникающие от веса вышележащей стены, можно принимать такими же. Кроме того не учтено возможное перераспределение напряжений в материале стены под действием нагрузок, приложенных с эксцентриситетом (например от плит вышележащих перекрытий). Но продолжим. а) После монтажа плиты перекрытия на существующую стену (рисунок 549.2.а)) в материале стены на опорной площадке и в материале плиты на опорном участке будут действовать сжимающие нормальные напряжения. В данном случае мы рассматриваем общую ситуацию, поэтому точное значение напряжений нас не интересует, пусть это будут напряжения, равные 0.5σ. Примечание: так как плита под действием собственного веса уже может иметь некоторый прогиб (а может и не иметь или даже наоборот иметь некоторый строительный подъем, если в плите использована предварительно напряженная арматура), то для упрощения восприятия начальный угол наклона поперечного сечения плиты не показан. К тому же в любом случае при монтаже готовой плиты напряжения под опорным участком плиты будут распределены равномерно при отсутствии других значительных нагрузок на плиту в процессе монтажа. б) После того, как будет сделана стена над плитой перекрытия, в материале плиты на опорном участке и в материале стены на опорной площадке возникнут дополнительные сжимающие напряжения. На рисунке 549.2.б) показан вариант, когда эти дополнительные сжимающие напряжения равны напряжениям возникшим в процессе монтажа плиты, пусть это тоже будут напряжения равные 0.5 σ. На лицо вроде бы явное защемление на опоре, но не будем торопиться с выводами и посмотрим, что происходит после того когда к плите приложена нагрузка. Примечание: Вообще-то подобная ситуация наиболее вероятна для плит с относительно длинным опорным участком, длина которого сопоставима с шириной стены. Чем меньше длина опорного участка, тем больше вероятность неравномерного распределения напряжений от вышележащей стены (рассмотрение стены как стойки с шарнирными опорами или жестким защемлением на опорах и соответствующим перераспределением напряжений). Причем это перераспределение будет таким, что минимальное значение напряжений будет в начале опорного участка плиты. 1.а) Если нагрузка на плиту в процессе эксплуатации будет в 1.5 раза больше нагрузки от собственного веса плиты, то напряжения под и над опорным участком плиты распределятся примерно таким образом, как показано на рисунке 549.2.1.а) при соответствующей длине опорного участка. Как видим в этом случае ни о каком защемлении не может быть и речи. Это же можно сказать и о случаях, когда нагрузка на плиту будет еще больше. При этом, чем меньше длина опорного участка плиты, тем больше вероятность того, что никакого защемления в стене не будет, однако при этом увеличивается вероятность пластических деформаций в материале стены на опорной площадке, как это показано на рисунке 549.2.1.б). И чем меньше длина опорного участка, тем больше вероятность не только пластических деформаций, но и частичного разрушения материала стены, как это показано на рисунке 549.2.1.в). На этих рисунках проиллюстрирована ситуация, когда предел прочности материала стены не превышает 2σ. Напряжения в материале плиты на опорных участках для упрощения восприятия на данных рисунках не показаны. В целом для вариантов, показанных на рисунках 549.2.1.а) - в), наиболее соответствующей будет расчетная схема, показанная на рисунке 549.1.а). 2.а) Если нагрузка на плиту в процессе эксплуатации будет например в 2 раза меньше нагрузки от собственного веса плиты, то при соответствующей длине опорного участка плиты может возникнуть ситуация, показанная на рисунке 549.2.2.а). В этом случае для приближенных расчетов можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б). Примечание: чем меньше длина опорного участка, тем больше вероятность пластических деформаций в материале стены над опорным участком плиты в месте повышенных напряжений из-за их неравномерного распределения. Это место на рисунке показано красной стрелкой. Кроме того сами по себе деформации плиты еще не означают значительного изменения положения нейтральной оси балки - плиты. 2.б) При увеличении длины опорного участка плиты возможна ситуация, показанная на рисунке 549.2.2.б). В данном случае уже можно вести речь о частичном защемлении. В этом случае для приближенных расчетов также можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б). В этом случае также увеличивается риск пластических деформаций под опорным участком плиты. 2.в) Если длина опорного участка значительна, то при определенных условиях может возникнуть ситуация, показанная на рисунке 549.2.2.в). В этом случае можно пользоваться расчетной схемой показанной на рисунке 549.1.в). Конечно же при этом в свою очередь требуется сначала определить длину l'. Как видим, возможных вариантов расчета плиты, точнее действующих на нее нагрузок, очень много. И при таких расчетах следует учитывать влияние множества факторов. В связи с этим возникает вполне логичный вопрос: как поступить человеку, задумавшему построить свой дом в одном экземпляре, к тому же собирающемуся использовать монолитные плиты перекрытия и вообще занимающемуся расчетами первый и последний раз в жизни? Ответ на данный вопрос будет предельно прост: В целом плиту перекрытия можно рассчитывать как балку на шарнирных опорах (или плиту опертую по контуру). При этом, если длина опорного участка плиты значительно больше высоты плиты, то в верхней зоне сечения плиты заложить арматуру, исходя из предположения, что на опоре может возникнуть жесткое защемление вышележащей стеной. Возможно это приведет к некоторому перерасходу материалов (в данном случае арматуры), однако более-менее точный расчет такой плиты может отнять достаточно много времени или денег. По сравнению с этими расходами траты на дополнительную арматуру могут выглядеть смехотворными.

 



poisk-ru.ru

Защемление плиты перекрытия в стене

Защемление плиты перекрытия в стене

Достаточно часто плиты перекрытия для упрощения расчетов рассматриваются и рассчитываются как однопролетные безконсольные балки на шарнирных опорах. Тем не менее иногда вышележащие стены могут создавать защемление плиты на опорах и влияние этого защемления следует учитывать.

В данном случае речь не идет о жестком защемлении плиты перекрытия в стене, так как с точки зрения строительной механики одним из показателей жесткого защемления является нулевой угол поворота поперечного сечения на опоре (поэтому такая опора и рассматривается как жесткая заделка).

Тем не менее при достаточно длинных опорных участках плиты, длина которых сопоставима с толщиной стены, поперечные сечения балки действительно могут иметь нулевой угол поворота, но при этом расстояние между такими сечениями будет больше расстояния между стенами, таким образом расчетную длину пролета жестко защемленной балки следует увеличивать. Но обо всем по порядку.

Сразу скажу, что далее будут рассматриваться только однопролетные балки. Для многопролетных неразрезных балок с равными пролетами промежуточные опоры в первом приближении могут рассматриваться как жесткие защемления однопролетных балок.

Чтобы определить, как более правильно рассматривать плиту перекрытия:

а) как однопролетную безконсольную балку,

б) как однопролетную балку с консолями

или в) как жестко защемленную балку:

Рисунок 549.1. Возможные расчетные схемы для плиты с опорами на стены: а) безконсольная балка на шарнирных опорах, б) балка с двумя консолями, в) жесткозащемленная балка

следует учесть несколько факторов:

1. Соотношение длины опорного участка к высоте балки

Как правило на первом этапе расчета любая балка рассматривается как некий стержень, высота и ширина поперечного сечения которого пренебрежимо малы по сравнению с длиной. Но в данном случае при определении расчетной схемы высота балки имеет большое значение.

Если длина опорного участка lоп меньше 1/2÷2/3 высоты сечения балки h, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на опорном участке мы имеем дело уже не со стержнем, а с массивным телом. А в массивном теле напряжения распределяются не так, как в стержне (или пластине). Кроме того, такое соотношение параметров явно свидетельствует о том, что длина опорных участков значительно меньше длины пролета.

2. Соотношение длины опорного участка к толщине стены

Когда плиты опираются не на всю толщину стены, а именно так чаще всего и бывает, то при расчетах это следует учитывать.

Если длина опорного участка lоп меньше 1/5÷1/3 толщины стены, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах.

Так как при таких параметрах на плиту будет во-первых передаваться не вся нагрузка от вышележащей стены, а только 1/3-1/5 часть. А во-вторых, в результате перераспределения напряжений в материале стены, пластических деформаций или даже частичного разрушения материала стены эта нагрузка может быть еще меньше.

3. Соотношение нагрузки от вышележащей стены к нагрузке на плиту

В малоэтажном частном строительстве, когда имеется всего 2 этажа и соответственно 3 перекрытия, нагрузка от вышележащей стены очень сильно зависит от того, какое именно перекрытие рассматривается.

Так нагрузка от вышележащей стены на перекрытие над 2 этажом будет минимальной. Нагрузка на перекрытие между 1 и 2 этажом от вышележащей стены будет больше, а ее значение зависит от различных факторов, которые будут рассмотрены ниже. Максимальная нагрузка от вышележащей стены будет на перекрытие между подвалом и 1 этажом (или перекрытие по ленточному фундаменту).

Таким образом для плит перекрытий между 2 этажом и чердаком ситуацию возможного защемления плиты в стене в большинстве случаев можно вообще не рассматривать.

Для плит перекрытий между 1 и 2 этажом такая ситуация возможна. Для плит перекрытий под 1 этажом такая ситуация наиболее вероятна.

4. Соотношение модулей упругости материалов плиты и стены

Если модуль упругости материала плиты больше или равен модулю упругости материала стены, то вероятность защемления плиты достаточно высока. Если модуль упругости материала плиты меньше модуля упругости материала стены, то вероятность защемления плиты в стене значительно меньше.

Для наглядности рассмотрим следующий, очень условный пример, когда модули упругости материала стены и плиты примерно одинаковы:

Рисунок 549.2. Возможные варианты нагрузки на плиту от вышележащей наружной стены, которые могут привести к частичному или полному защемлению.

Сразу скажу на данном рисунке показаны далеко не все возможные варианты, а лишь очень малая их часть и только для готовых плит перекрытия, а не монолитных, изготавливаемых непосредственно в процессе строительства дома.

Для монолитных плиты распределение напряжений на опорной площадке будет зависеть от различных факторов, в частности от прогибов опалубки в процессе монтажа. Тем не менее напряжения, возникающие от веса вышележащей стены, можно принимать такими же. Кроме того не учтено возможное перераспределение напряжений в материале стены под действием нагрузок, приложенных с эксцентриситетом (например от плит вышележащих перекрытий). Но продолжим.

а) После монтажа плиты перекрытия на существующую стену (рисунок 549.2.а)) в материале стены на опорной площадке и в материале плиты на опорном участке будут действовать сжимающие нормальные напряжения. В данном случае мы рассматриваем общую ситуацию, поэтому точное значение напряжений нас не интересует, пусть это будут напряжения, равные 0.5σ.

Примечание: так как плита под действием собственного веса уже может иметь некоторый прогиб (а может и не иметь или даже наоборот иметь некоторый строительный подъем, если в плите использована предварительно напряженная арматура), то для упрощения восприятия начальный угол наклона поперечного сечения плиты не показан. К тому же в любом случае при монтаже готовой плиты напряжения под опорным участком плиты будут распределены равномерно при отсутствии других значительных нагрузок на плиту в процессе монтажа.

б) После того, как будет сделана стена над плитой перекрытия, в материале плиты на опорном участке и в материале стены на опорной площадке возникнут дополнительные сжимающие напряжения. На рисунке 549.2.б) показан вариант, когда эти дополнительные сжимающие напряжения равны напряжениям возникшим в процессе монтажа плиты, пусть это тоже будут напряжения равные 0.5 σ. На лицо вроде бы явное защемление на опоре, но не будем торопиться с выводами и посмотрим, что происходит после того когда к плите приложена нагрузка.

Примечание: Вообще-то подобная ситуация наиболее вероятна для плит с относительно длинным опорным участком, длина которого сопоставима с шириной стены. Чем меньше длина опорного участка, тем больше вероятность неравномерного распределения напряжений от вышележащей стены (рассмотрение стены как стойки с шарнирными опорами или жестким защемлением на опорах и соответствующим перераспределением напряжений). Причем это перераспределение будет таким, что минимальное значение напряжений будет в начале опорного участка плиты.

1.а) Если нагрузка на плиту в процессе эксплуатации будет в 1.5 раза больше нагрузки от собственного веса плиты, то напряжения под и над опорным участком плиты распределятся примерно таким образом, как показано на рисунке 549.2.1.а) при соответствующей длине опорного участка. Как видим в этом случае ни о каком защемлении не может быть и речи. Это же можно сказать и о случаях, когда нагрузка на плиту будет еще больше. 

При этом, чем меньше длина опорного участка плиты, тем больше вероятность того, что никакого защемления в стене не будет, однако при этом увеличивается вероятность пластических деформаций в материале стены на опорной площадке, как это показано на рисунке 549.2.1.б). И чем меньше длина опорного участка, тем больше вероятность не только пластических деформаций, но и частичного разрушения материала стены, как это показано на рисунке 549.2.1.в). На этих рисунках проиллюстрирована ситуация, когда предел прочности материала стены не превышает 2σ. Напряжения в материале плиты на опорных участках для упрощения восприятия на данных рисунках не показаны.

В целом для вариантов, показанных на рисунках 549.2.1.а) - в), наиболее соответствующей будет расчетная схема, показанная на рисунке 549.1.а). 

2.а) Если нагрузка на плиту в процессе эксплуатации будет например в 2 раза меньше нагрузки от собственного веса плиты, то при соответствующей длине опорного участка плиты может возникнуть ситуация, показанная на рисунке 549.2.2.а).

В этом случае для приближенных расчетов можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

Примечание: чем меньше длина опорного участка, тем больше вероятность пластических деформаций в материале стены над опорным участком плиты в месте повышенных напряжений из-за их неравномерного распределения. Это место на рисунке показано красной стрелкой. Кроме того сами по себе деформации плиты еще не означают значительного изменения положения нейтральной оси балки - плиты.

2.б) При увеличении длины опорного участка плиты возможна ситуация, показанная на рисунке 549.2.2.б). В данном случае уже можно вести речь о частичном защемлении.

В этом случае для приближенных расчетов также можно воспользоваться расчетной схемой, показанной на рисунке 549.1.б).

В этом случае также увеличивается риск пластических деформаций под опорным участком плиты.

2.в) Если длина опорного участка значительна, то при определенных условиях может возникнуть ситуация, показанная на рисунке 549.2.2.в).

В этом случае можно пользоваться расчетной схемой показанной на рисунке 549.1.в).

Конечно же при этом в свою очередь требуется сначала определить длину l'.

Как видим, возможных вариантов расчета плиты, точнее действующих на нее нагрузок, очень много. И при таких расчетах следует учитывать влияние множества факторов. В связи с этим возникает вполне логичный вопрос: как поступить человеку, задумавшему построить свой дом в одном экземпляре, к тому же собирающемуся использовать монолитные плиты перекрытия и вообще занимающемуся расчетами первый и последний раз в жизни?

Ответ на данный вопрос будет предельно прост:

В целом плиту перекрытия можно рассчитывать как балку на шарнирных опорах (или плиту опертую по контуру). При этом, если длина опорного участка плиты значительно больше высоты плиты, то в верхней зоне сечения плиты заложить арматуру, исходя из предположения, что на опоре может возникнуть жесткое защемление вышележащей стеной.

Возможно это приведет к некоторому перерасходу материалов (в данном случае арматуры), однако более-менее точный расчет такой плиты может отнять достаточно много времени или денег. По сравнению с этими расходами траты на дополнительную арматуру могут выглядеть смехотворными.

freedocs.xyz

ufacena.com - View Article

Основные сведения о перекрытиях

Подавляющее большинство объектов промышленного и гражданского строительства имеет несколько этажей и включает в себя стены и перекрытия. Межэтажные перекрытия являются одновременно потолком нижнего этажа и полом верхнего этажа. Можно выделить по назначению еще цокольные и чердачные перекрытия. Монтаж перекрытий можно выполнить различными способами и материалами.

Повсюду отмечается бурный рост монолитного строительства, в котором перекрытия создаются путем заливки бетона в подготовленную (имеющую пространственное армирование) многоразовую опалубку непосредственно на стройке. Этот прогрессивный метод позволяет получать перекрытия любой формы в плане. Но он требует повышенных затрат времени на подготовительные работы и на набор прочности монолитной плиты.

Однако современное массовое строительство, основанное на использовании несущих плит перекрытий, которые изготавливаются в заводских условиях, не сдает позиций. Главное преимущество монтажа перекрытий из сборного железобетона (плиты перекрытий) – это скорость производства работ, отработанная до мелочей технология и надежность, проверенная десятилетиями. Качество заводского сборного железобетона всегда будет выше, чем у железобетона, залитого на стройплощадке.

Принципы и требования к монтажу плит перекрытий

Любые плиты перекрытий являются элементом конструкции здания. Главное назначение этих плит следует из их названия – это перекрыть проем, создать горизонтальную плоскость, которая способна выдерживать нагрузки.

Плита не может висеть в воздухе, поэтому важнейшим условием при монтаже плит перекрытий является их опирание на вертикальные элементы конструкции здания, которые сооружаются в первую очередь:

1. ригели и прогоны;

2. некапитальные и капитальные стены.

Плиты ПК, в зависимости от их марки допускают опирание на 2, 3 или 4 стороны, этим они отличаются от плит ПБ, для которых допускается опирание только на две короткие стороны. Категорически запрещено опирать любые плиты только на длинные стороны. А также делать дополнительное опирание посредине на эти однопролетные плиты. Плиты ПК допускают защемление в стенах. Для плит ПБ необходимо обеспечить свободное опирание торцов. Монтаж плит перекрытий, независимо от их марки, должен обеспечивать ряд требований нормативных документов к перекрытиям в целом:

1. несущая способность, жесткость и прочность;

2. гидроизоляционные свойства;

3. звуконепроницаемость;

4. теплоизоляция;

5. пожаробезопасность.

Технология монтажа плит перекрытий

Нормативные документы однозначно определяют ряд требований к производству монтажных

работ плит перекрытий:

1. Бригада монтажников плит перекрытий должна иметь опыт подобных работ, которые

являются опасными.

2. Необходимо, чтобы стропальщик прошел обучение, имел соответствующее удостоверение

и допуск.

3. Все члены бригады должны пройти инструктаж по ТБ.

4. При монтаже плит перекрытий в обязательном порядке необходим инструментальный

Контроль над производством работ

Непосредственно перед укладкой плит перекрытий производится замер проема и определяется нужное количество плит. Не всегда эти размеры идеально подходят друг к другу. Можно уложить плиты плотно и получить зазор между стеной и последней плитой, который заделывается по особой технологии. Как вариант, можно уложить все плиты с небольшими зазорами между собой и впоследствии заделать их бетонным раствором.

Перед укладкой плит производится нивелировка опорной поверхности стен или ригелей (прогонов). Разница отметок не должна превышать 10-15 мм. Для стен из блоков (пенобетон, шлакобетон, газобетон и т. п.), перед монтажом плит перекрытий, обязательно сооружается армирующий пояс из бетонного раствора и арматуры толщиной не менее 150 мм, по всему периметру укладки плит.

Затем производится зачистка опорной поверхности от наплывов кладочного раствора и случайного мусора и нанесение подстилающего слоя бетонного раствора. Поднятая краном панель перекрытия укладывается на место. Плоскость соседней панели должна совпадать с уложенной панелью. Постоянно ведется контроль нивелиром или строительным уровнем.

Допустимый перепад не более 8-10 мм, для длины плит 4-8 м. Если он больше, панель снова приподнимают и вносят изменения в толщину растворной подушки под плитой.

Для различной длины плит имеются свои нормативы длины опирающейся части. Для стандартных ПК и ПБ с пролетом 6 м принимаются следующие минимально допустимые величины опирания:

1. 150 мм – на стены из легких бетонных блоков;

2. 90-100 мм – на кирпичные стены;

3. 75 мм – на железобетонные прогоны и ригели;

4. 70 мм – на стальные конструкции.

Излишнее опирание плит перекрытий по длине приводит к образованию мостиков холода. После укладки плит и инструментальной проверки перекрытия выполняется (если требуется в проекте) закрепление плит со стеновыми анкерами и скрепление плит между собой. Далее производится заделка стыков вдоль плит и вдоль стен.

Плиты перекрытий, которые опираются на наружные стены или элементы конструкций требуют обязательной заделки пустот на глубину до 150 мм (забутовка кирпичом и бетонным раствором).

Для высотных зданий обязательна такая же заделка пустот в плитах, которые опираются и на внутренние капитальные стены (для увеличения прочности), начиная с предпоследнего этажа и ниже.

ufacena.com

Защемление плиты перекрытия в стене

Защемление плиты перекрытия в стене Достаточно часто плиты перекрытия для упрощения расчетов рассматриваются и рассчитываются как однопролетные безконсольные балки на шарнирных опорах. Тем не менее иногда вышележащие стены могут создавать защемление плиты на опорах и влияние этого защемления следует учитывать. В данном случае речь не идет о жестком защемлении плиты перекрытия в стене, так как с точки зрения строительной механики одним из показателей жесткого защемления является нулевой угол поворота поперечного сечения на опоре (поэтому такая опора и рассматривается как жесткая заделка). Тем не менее при достаточно длинных опорных участках плиты, длина которых сопоставима с толщиной стены, поперечные сечения балки действительно могут иметь нулевой угол поворота, но при этом расстояние между такими сечениями будет больше расстояния между стенами, таким образом расчетную длину пролета жестко защемленной балки следует увеличивать. Но обо всем по порядку. Сразу скажу, что далее будут рассматриваться только однопролетные балки. Для многопролетных неразрезных балок с равными пролетами промежуточные опоры в первом приближении могут рассматриваться как жесткие защемления однопролетных балок. Чтобы определить, как более правильно рассматривать плиту перекрытия: а) как однопролетную безконсольную балку, б) как однопролетную балку с консолями или в) как жестко защемленную балку:

Рисунок 549.1. Возможные расчетные схемы для плиты с опорами на стены: а) безконсольная балка на шарнирных опорах, б) балка с двумя консолями, в) жесткозащемленная балка следует учесть несколько факторов: 1. Соотношение длины опорного участка к высоте балки Как правило на первом этапе расчета любая балка рассматривается как некий стержень, высота и ширина поперечного сечения которого пренебрежимо малы по сравнению с длиной. Но в данном случае при определении расчетной схемы высота балки имеет большое значение. Если длина опорного участка lоп меньше 1/2÷2/3 высоты сечения балки h, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах. Так как при таких параметрах на опорном участке мы имеем дело уже не со стержнем, а с массивным телом. А в массивном теле напряжения распределяются не так, как в стержне (или пластине). Кроме того, такое соотношение параметров явно свидетельствует о том, что длина опорных участков значительно меньше длины пролета. 2. Соотношение длины опорного участка к толщине стены Когда плиты опираются не на всю толщину стены, а именно так чаще всего и бывает, то при расчетах это следует учитывать. Если длина опорного участка lоп меньше 1/5÷1/3 толщины стены, то такая балка может рассматриваться как безконсольная однопролетная балка на шарнирных опорах. Так как при таких параметрах на плиту будет во-первых передаваться не вся нагрузка от вышележащей стены, а только 1/3-1/5 часть. А во-вторых, в результате перераспределения напря

filesclub.net

Заделка швов между плитами перекрытия после монтажа и на потолке

Монтаж плит перекрытия – ответственное дело, требующее знаний и опыта. К сожалению, случаются ситуации, когда на месте приходится менять проектное решение, и в результате – нестандартная ситуация, когда ширины завезенных на стройплощадку плит не хватает для монтажа перекрытия. Мы ответим на извечный русский вопрос «Что делать?»

Нормативные требования к величине и заливке монтажных швов

Типовые размеры плит предусматривают их укладку со швами 15 мм, то есть практически встык. Нормативная литература прописывает устройство монолитных участков с армированием при расстоянии между плитами в 300 мм.Фото 4Для заделки швов между плитами перекрытия надо применять бетон на быстротвердеющем портландцементе или портландцемент марки М400 или выше на мелком заполнителе. Размер зерна заполнителя не должен быть больше трети межплитного зазора и трех четвертей размера в свету между армирующими стержнями. В бетонную смесь надо вводить пластификаторы и ускорители схватывания.

Если получился стандартный шов между плитами шириной 10-15 мм, то обычно на дно шва, который устроен в виде «конуса», укладывают пруток арматуры, и заливают раствором.

Заделываем непроектные стыки до 300 мм

В случае, если ширина швов между соседними плитами не превышает 300 мм, заделать такой шов относительно просто, на выбор – несколько способов заливки швов.

Способ 1

  • Снизу соседних плит с помощью распорок устанавливаем доску или лист фанеры, перекрывающий зазор – это опалубка;
  • Поверх опалубки можно уложить кусок кровельного материала или пленки, тогда на опалубке не останется следов бетона, и ее можно будет использовать и дальше;
  • Промежуток между плитами заливаем раствором;
  • Ждем набора бетоном прочности в течение 3-4 недель, опалубку убираем.

Способ 2

Если нет возможности подвести опалубку снизу, можно сделать несъемную опалубку из оцинкованной кровельной стали толщиной 0,8-1 мм по размеру зазора между плитами, с опиранием на верхнюю грань плиты (корыто). Профиль боковой поверхности плит обеспечит дополнительный распор и жесткость монолитному участку.

Способ 3

Еще один способ заделки швов несъемной опалубкой – из полос стали толщиной от 4 мм и шириной 5 см сделать монтажные детали по профилю зазора, как и в предыдущем случае опирающиеся на лицевую поверхность плит, уложить эти монтажные детали через 0,5 м по длине плиты. На дно (в плоскости нижней грани плит) кладем полосу из оцинкованной кровельной стали, фанеры или пластика, бетонируем. Этот способ обеспечивает надежное сцепление монолитного участка с плитами.

Способ 4

Если попалась пара бракованных плит с неверным расположением боковых замков, когда выемка оказывается внизу, их можно установить рядом с зазором 2-3 см. снизу подвести опалубку по способу 1 и залить бетон через предусмотренную щель.

Монолитные участки шириной больше 300 мм

В случае, если зазор между плитами от 100 до 300 мм, выполняем монолит с армированием. Здесь также возможны варианты.

Схема 1

Вариант 1

Используется в случае, когда устройство опалубки снизу невозможно.

  • Устанавливаем несущие брусья сечением 40х100 мм на ребро, с шагом 1 м, опирая на соседние плиты;
  • К несущим брусьям проволочными скрутками крепим щиты опалубки;
  • Закрываем опалубку кровельным материалом или пленкой;
  • Устанавливаем арматурный каркас на стаканы, чтобы арматура находилась выше опалубки на 30…50 мм;
  • Бетонируем.
Схема 2

Вариант 2

При возможности закрепления опалубки снизу можно использовать для устройства несущей конструкции арматуру.

  • Сооружаем опалубку;
  • Изготавливаем из арматуры А1Ø8…12 (в зависимости от ширины перекрываемого зазора) монтажные детали, учитывая, что между дном опалубки и арматурой должно быть расстояние не менее 30 мм;
  • На дно опалубки укладываем защитный материал;
  • Устанавливаем монтажные детали;
  • Укладываем арматуру или арматурный каркас;
  • Бетонируем.
Схема 3

Важно!

Не соглашайтесь на заделку зазора между стеной и плитой легкобетонными ячеистыми блоками (пенобетонными, керамзитобетонными и т.д.) – они не обладают требуемой несущей способностью. С учетом расстановки мебель вдоль стен на этот участок перекрытия приходится большая нагрузка, это приведет к разрушению блоков и необходимости затратного ремонта перекрытия.

Справка

Участки между стеной и плитой заделываются аналогичным образом.

В этом сюжете рассказывается не только про заделку швов, но и про анкеровку плит между собой:

Заделка шва потолка с нижней стороны

Межплиточные швы – русты на монтаже заполняют бетоном, затем потолок грунтуют, шпатлюют и красят, если не предусмотрена другая отделка.

Последовательность заделки рустов

Перед бетонированием швы тщательно очищают от пыли и остатков раствора металлической щеткой, для лучшей адгезии раствора к плите можно прогрунтовать боковые поверхности.

  1. Приготовленный свежий бетонный раствор выгружают в контейнер и доставляют к месту работ;
  2. При небольшой ширине руста заливку выполняют за один раз, при большой ширине участка — в несколько слоев, но не более чем через 2…3 часа;
  3. Участок бетонирования небольшой ширины штыкуют, при большой – уплотняют вибратором;
  4. Первую неделю поверхность монолита смачивают водой ежедневно;
  5. Через 28 дней опалубку снимают.

Неравномерная усадка дома

Неприятно, когда на потолке появляются трещины. Часто это случается из-за::

  • Неравномерной осадки здания;
  • Неправильно выбранной марки бетона;
  • Некачественный бетон.

Остановимся на причинах неравномерной осадки. Она может возникнуть в случае:

  • Конструктивных недоработок – неправильно запроектированного фундамента;
  • Устройства фундамента без учета геологии, глубины промерзания грунта и глубины залегания грунтовых вод;
  • Некачественно выполненной работы по устройству фундамента и кладки стен;
  • Некачественных строительных материалов.

Чтобы понять причину появления трещин порой приходится заказывать строительную экспертизу.

Декоративные потолки

Защитный слой бетона толщиной 30-50 мм должен гарантировать отсутствие на потолке пятен ржавчины от арматуры, но иногда этот слой бывает неэффективным. От лицезрения пятен на потолке, следов протечек и трещин рустов лучшее средство – устройство подвесного, подшивного или натяжного потолка.

Декоративный потолок – лучшее решение при необходимости выравнивания потолочной поверхности. Он закроет все строительные огрехи и придаст законченность интерьеру. При желании уменьшить высоту помещения устраивают многоуровневые или подвесные потолки из гипсокартона, акустических плит или комбинированные из различных материалов.

В помещениях небольшой высоты выполняют подшивные или натяжные потолки. Здесь чемпион – натяжной потолок, который «съедает» лишь 3-5 см высоты комнаты.

Любая проблема находит свое решение. Заделка швов между плитами в газобетонном доме, даже при большой ширине, не составляет большой конструктивной или технической проблемы. Из предложенных вариантов легко выбрать подходящий конкретному случаю.

Мы старались написать лучшую статью. Если понравилось — пожалуйста, поделитесь ею с друзьями или оставьте ниже свой комментарий. Спасибо!

Отличная статья 2

izbloka.com