Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Подбор арматуры для фундаментной плиты. Фундаментная плита армирование


Расчет монолитного фундамента - плиты. Подробная инструкция, видео.

расчет арматуры на монолитную плиту калькуляторВ процессе армирования фундамента используется арматура для бетонной монолитной плиты, повышающая устойчивость основы к нагрузкам, оказываемым на фундамент в процессе эксплуатации. Сооружаемый каркас из арматуры существенно усиливает прочностные характеристики бетона и предотвращает его разрушение. При этом чтобы конструкция выполняла свои функции, ее монтаж необходимо осуществлять правильно, соблюдая ряд технологических требований.

Особенности армирования фундамента

В отличие от усиления перекрытий, укладка арматуры в фундаментных плитах должна проводиться в неравномерном порядке. Для обеспечения максимального усиления зон, находящихся под повышенной нагрузкой, прутья должны быть уложены с учетом уровня продавливания в том или ином месте плиты. Исключением является тонкое фундаментное основание (не более 150 мм), закладываемое под легкие сооружения – в подобных случаях раскладка проводится в форме сетки.

устройство фундаментной плитыВ жилищном строительстве толщина фундамента, как правило, варьируется в пределах 20-30 см. и зависит от массы сооружения и свойств грунта. Чтобы обеспечить максимально возможное усиление арматуру следует заложить в два слоя, поверх которых необходимо предусмотреть защитный бетонный слой, предотвращающий коррозию.

Выбор арматуры

Для проведения качественных работ по армированию, необходимо не только знать, как вязать арматуру, но и иметь представление о ее свойствах. Для фундамента потребуется выбор арматуры определенного диаметра, который должен соответствовать толщине плиты (минимум 0,3% от расчетной площади сечения).

расчет арматуры для плитного фундамента калькуляторТиповой расчет арматуры для монолитно-плитного фундамента толщиной менее 3 метров предполагает использование 10-миллиметровых прутков. При возрастании толщины плиты следует выбрать арматуру, диаметр которой варьируется в пределах 12-16 мм. Зная, объем задействованных прутков можно вычислить массу необходимого материала, используя калькулятор расчета.

Схемы армирования

При армировании фундамента по основной ширине прутья должны укладываться с сохранением одинакового размера ячейки по всей площади плиты. В среднем шаг сетки составляет около 20-40 см, с увеличением массы здания сокращается расстояние между отдельными прутьями. Для сетки, заложенной под кирпичным зданием, следует взять минимальное расстояние в 200 мм, тогда как для более легких каркасных и деревянных домов достаточно сетки с максимальным шагом, что требует меньшего количества арматуры. Вне зависимости от конфигурации сетки арматурного каркаса, необходимо следить за тем, чтобы расстояние между прутками не превышало толщину плиты на 150% и больше.

как правильно вязать арматуру для монолитной плиты Как правило, не имеет значения, какую использовать арматуру для сооружения нижнего и верхнего слоя – и в том, и в другом случае применяются одинаковые прутки. Однако если в наличии имеются прутки разных размеров, то более толстые укладываются под плитный фундамент в нижнем слое, так как наиболее напряжение создается именно там.

Торцевые части прутков связываются П-образными элементами, объединяющими нижний и верхний слой в единое целое. Кроме того, они нужны для компенсации крутящих моментов, способных разрушить каркас.

В местах, в которых плита подвергается максимальному продавливанию (к примеру, под станами) шаг сетки необходимо уменьшить. Насколько густой должна быть сетка в проблемных зонах определяют соответствующие расчеты, однако в среднем ее шаг уменьшают в два раза. Для обеспечения дополнительного усиления плиточного фундамента его каркас объединяют армированной подвальной стеной, для чего в соответствующих местах делают выпуск стержней.

Создание проемов

Чтобы обеспечить выход инженерных коммуникаций монолитную плиту следует оснастить проемами. Процесс их проектирования имеет много общего с возведением железобетонных сооружений и включает следующие рекомендации:

  • В необходимом месте в сетке вырезаются отверстия с загибанием концов прутков вверх;
  • Для больших отверстий (30 см. и больше) потребуется сделать окаймление из прутков, которые располагают по диагонали к основному направлению сетки;
  • Маленькие отверстия для монолитной плиты в усилении не нуждаются.

Необходимо учесть, что проемы для рассчитанного коммуникационного узла изготавливаются только в незаглубленных плитах.

Расчет количества арматуры

Существует несколько способов, как осуществить расчет арматуры на монолитную плиту, программа-калькулятор является наиболее простым и наглядным. Входные данные, которые вводятся в калькулятор расчета: длина и ширина плиты, шаг укладки армирующей сетки, количество слоев.

Как видим, чтобы узнать требуемое количество арматуры для плитного фундамента не требуются сложные вычисления, калькулятор учитывает ряд нюансов:

  • Учитывается необходимый просвет между краем бетонной плиты и торцами элементов армирующей конструкции;
  • Чтобы более точно рассчитать количество материала итоговый результат содержит 10-процентный запас;
  • Результат отображает не только общий погонный метраж, но и количество отдельных прутков (берется стандартная длина 11,7 м).

Заключение

Использование технологии армирования монолитного фундамента является наиболее эффективным способом его усиления, повышающим эксплуатационных срок плиты. Точный расчет плитного фундамента (калькулятор предоставляет результат в более развернутом формате) позволяет узнать требуемое количество арматуры и подсчитать затраты на покупку стройматериала.

rumydom.ru

схема и чертеж для плитного фундамента

  • Монтаж фундамента
    • Выбор типа
    • Из блоков
    • Ленточный
    • Плитный
    • Свайный
    • Столбчатый
  • Устройство
    • Армирование
    • Гидроизоляция
    • После установки
    • Ремонт
    • Смеси и материалы
    • Устройство
    • Устройство опалубки
    • Утепление
  • Цоколь
    • Какой выбрать
    • Отделка
    • Устройство
  • Сваи
    • Виды
    • Инструмент
    • Работы
    • Устройство
  • Расчет

Поиск

Портал о фундаментах Портал о фундаментахФундаменты от А до Я.
  • Монтаж фундамента
    • ВсеВыбор типаИз блоковЛенточныйПлитныйСвайныйСтолбчатый

      Фундамент под металлообрабатывающий станок

      фундамент лента

      Устройство фундамента из блоков ФБС

      Установка опалубки

      Заливка фундамента под дом

      вухэтажного загородного дома с мансардой

      Характеристики ленточного фундамента

  • Устройство
    • ВсеАрмированиеГидроизоляцияПосле установкиРемонтСмеси и материалыУстройствоУстройство опалубкиУтеплениеУстранение трещин в стенах фундамента

      Устранение трещин в стенах фундамента

      Опалубка для ростверка

      Как армировать ростверк

      Арматура траншея

      Необходимость устройства опалубки

      гидроизоляция цоколя

      Как сделать гидроизоляцию цоколя

  • Цоколь
    • ВсеКакой выбратьОтделкаУстройствоискусственный материал

      Отделка фундамента камнем

      Выбор цокольной плитки для фасада

      Выбор цокольной плитки для фасада

      Что такое цоколь

      Что такое цоколь

      Закрыть свайный фундамент

      Как закрыть винтовые сваи

  • Сваи
    • ВсеВидыИнструментРаботыУстройствоиспытания свай

      Динамические и статические испытания свай

      Использование железобетонных свай

      Использование железобетонных свай

      винт свая

      Изготовление винтовых свай своими руками

fundamentaya.ru

Подбор арматуры для фундаментной плиты

МА3 = МС3 = q3сk32/2 = 1293.2·1.82/2 = 2095 кгс·м или 209500 кгс·см

МВ3 = q3с(k3 + l3)2/2 - A3l3 = 1293.2(1.8 + 6.2)2/2 - 5740·6.2 = 5794.4 кгс·м или 579440 кгс·см

Мx3 = q3сx32/2 - A3(x3 - k3) = 1293.2·4.442/2 - 5740(4.44 - 1.8) = -2406.8 кгс·м или -240680 кгс·см

где x3 = A3/q3с = 5740/1293.2 = 4.44 м (так как максимальный момент будет в той точке, где разница поперечных сил от сосредоточенной силы и распределенной нагрузки будет равна нулю).

Примечание: если при армировании плиты будут оставлены выпуски арматуры для ленточной части фундамента под стены. И эта арматура будет соответствующим образом рассчитана на возникающие нагрузки, то для расчетов можно использовать определенные ранее параметры: длину консолей k'3 = 1.7 м и длину пролетов l'3 = 6 м. Такое уменьшение параметров кажется незначительным, но вот результат будет совсем другим. Уменьшение опорной реакции составит А'3 = 6000 - 1293.2·0.4 = 5483 кг.

МА3 = МС3 = q3сk'32/2 = 1293.2·1.72/2 = 1868.7 кгс·м или 186870 кгс·см

МВ3 = q3с(k'3 + l'3)2/2 - A'3l'3 = 1293.2(1.7 + 6)2/2 - 5483·6 = 5439 кгс·м или 543900 кгс·см

Мx3 = q3сx32/2 - A3(x'3 - k'3) = 1293.2·4.242/2 - 5483(4.24 - 1.7) = -2302.5 кгс·м или -230250 кгс·см

где x'3 = A3/q3с = 5484/1293.2 = 4.24 м .

Таким образом конструктивными мерами можно уменьшить максимальный расчетный момент почти на 7%. Тем не менее мы продолжим расчет по ранее полученным данным. При этом с целью унификации используемого сортамента арматуры армирование консолей будем производить арматурой такого же диаметра, как и в пролетах.

Согласно "Руководству по проектированию плитных фундаментов..." для плиты следует использовать бетон марки не ниже М200. Мы воспользуемся данной рекомендацией и даже для дальнейших расчетов будем использовать бетон класса В20, имеющий расчетное сопротивление сжатию Rb = 11.5 МПа или 117 кгс/см2 и арматуру класса AIII (А400), с расчетным сопротивлением растяжению Rs = 355 МПа или 3600 кгс/см2.

Теперь подобрать необходимое сечение арматуры для полосы плиты шириной bпол = 1 м можно по любой из возможных методик (по старой методике, по новому СНиПу, другим способом), результат будет приблизительно одинаковым. Но при использовании любой из методик необходимо помнить о том, что высота расположения арматуры будет разная. В данном случае для длинной арматуры, располагаемой в пролете параллельно оси х (верхняя зона сечения), можно предварительно принять h03 = 27 см, а для арматуры, располагаемой под стенами (опорные участки, нижняя зона поперечного сечения), можно предварительно принять h'03 = 21 см, так как предварительную бетонную подготовку под плиту мы пока не планируем, а соблюдать конструктивные требования СНиП 2.03.01-84 надо, так как защитный слой бетона в монолитных плитах должен составлять не менее 70 мм.

Если производить расчет по старой методике:

А0п3 = Mх3/bh303Rb = 240680/(100·272·117) = 0.028

А0В3 = MВ3/bh'203Rb = 579440/(100·212·117) = 0.112

Даже без дальнейших расчетов уже понятно (во всяком случае мне), что сжатая зона бетона будет относительно небольшой и большого диаметра арматуры не потребуется, поэтому мы можем уменьшить высоту сечения плиты сантиметров на 7 (напомню, мы собирались делать плиту высотой 30 см), что как минимум даст экономию бетона на 7·100%/30 = 23.3%, да и нагрузка на основание при этом уменьшится, а вот на значение расчетной нагрузки это не влияет. Тогда при h0 = 20 см и при h'0 = 15 см

А0п3 = Mх3/bh303Rb = 240680/(100·202·117) = 0.0514

А0В3 = MВ3/bh'203Rb = 579440/(100·152·117) = 0.22

А0А3 = MА3/bh303Rb = 209500/(100·152·117) = 0.079

Как видим, не смотря на то, что значение момента в пролете больше, чем на опоре А, но за счет меньшей относительной высоты сечения тут может потребоваться арматура большего диаметра.

Теперь по вспомогательной таблице 1(170) методом интерполяции значений:

Таблица 170.1. Данные для расчета изгибаемых элементов прямоугольного сечения, армированных одиночной арматурой

таблица для расчета железобетонных конструкций прямоугольного сечения

мы можем найти все необходимые для дальнейших расчетов параметры ηп = 0.972 и ξп = 0.057, ηВ = 0.874 и ξВ = 0.252, ηА = 0.959 и ξА = 0.082. Далее ограничимся простой проверкой, согласно таблице 220.1 граничное значение относительной высоты сжатой зоны бетона при арматуре А400 составляет ξR = 0.531 > ξB = 0.252, т.е. расчет можно продолжать, требование по относительной высоте сжатой зоны бетона нами не превышено. И тогда требуемая площадь сечения арматуры:

Faп3 = Mх3/ηh03Rs = 240680/(0.972·20·3600) = 3.44 см2.

FaА3 = MА3/ηh03Rs = 209500/(0.959·15·3600) = 4.04 см2.

FaВ3 = MВ3/ηh'03Rs = 579440/(0.874·15·3600) = 12.28 см2.

При шаге арматуры 200 мм в полосе шириной 1 м будет 5 стержней и тогда по таблице 2 (см. ниже) для армирования плиты  на опоре В следует принять арматуру диаметром не менее 18 мм (сечение 5 стержней составит 12.7 см2). А для армирования консолей вроде бы 5 стержней диаметром 10 мм с сечением 3.93 см2 недостаточно (не хватает 2.7% до 4.04 см2). И тут мы можем вспомнить все, и то что нагрузку определяли с запасом, при этом не делали разницы между постоянной и временной нагрузкой, и то что нагрузка будет не равномерно распределенная, и то что размеры консолей и пролетов мы приняли с запасом, и то что расчетное сопротивление меньше нормативного, а потому с учетом даже одного только этого фактора допускается принимать сечение арматуры на 2-3% меньше требуемого. А можно ничего не вспоминать, а просто принять 5 стержней диаметром 12 мм, сечение стержней составит 5.65 см2. Пока продолжим расчет  для стержней диаметром 18 и 10 мм, а окончательное решение примем, когда будут известны требуемые диаметры арматуры для всех сечений.

Коэффициент армирования в районе опоры В3 при этом составит

μВ3 =100% Fa/bh0 = 100·12.7/(100·15) = 0.85%

Это больше рекомендуемого для плит перекрытия коэффициента армирования (0.3-0.6%). Однако у нас не плита перекрытия, а фундаментная плита, и такое армирование будет только в районе опоры В. В пролетах и консолях при использовании 5 стержней диаметром 10 мм площадь сечения арматуры составит 3.93 см2, соответственно μп3 = 0.262, так что менять высоту плиты не будем.

Таблица 170.2. Площади поперечных сечений и масса арматурных стержней.

площадь поперечного сечения арматуры

Проверка по касательным напряжениям

Сразу проверим необходимость поперечного армирования. Согласно одному из требований

Qmax ≤ 0.5Rbtbh'03 + 3h'03q (170.8.2.1)

Согласно нашей расчетной схеме Qmax - это половина опорной реакции В3 = 9466.5 кг (так как вторая половина опорной реакции действует со второй стороны опоры). Сопротивление растяжению бетона выбранного класса составляет Rbt = 0.9 МПа или приблизительно 9 кгс/см2. Тогда

9466.5/2 = 4733.25 < 0.5·9·100·15 + 3·15·12.932 = 7331.94 кг

Это условие соблюдается, по расчету поперечная арматура не нужна, конструктивные требования также позволяют обойтись без поперечной арматуры. арматуры, в данном случае имеется в виду вертикальная поперечная арматура.

Определение длины стержней

Для арматуры периодического профиля диаметром 16 мм минимально допустимая длина анкеровки lan(16) в сжатом бетоне составляет согласно Таблице 328.1 не менее 12d = 12·18 = 216 мм, не менее 200 мм, а также не менее (0.5·3600/117 + 8)16 = 374 мм (пояснения к формуле там же, где и таблица). Для арматуры диаметром 10 мм: lan(10) = (0.5·3600/117 + 8)10 = 234 мм.

Тогда, если воспользоваться общими рекомендациями, длину стержней для армирования нижней зоны сечения плиты под опорой В3 - внутренней стеной желательно принимать не менее 0.5l3 + b + 2lan(16) = 0.5·6 + 0.4 + 0.75 = 4.15 м. Впрочем такая длина необходима только для половины стержней, вторую половину можно просто довести до границы растянутой зоны, т.е. принять длину стержней 3.4 м.

Для армирования нижней зоны сечения плиты на крайних опорах и консолей достаточно 5 стержней диаметром 10 мм. При этом стержни следует заводить на всю длину консоли, ширину стены, зону действия момента в пролете и длину анкеровки. Если воспользоваться общими рекомендациями, то длина действия момента составит 0.25l3 = 1.5 м, тогда k3 + b + 0.25l3 + lan(10) = 1.7 + 0.4 + 1.5 + 0.23 = 3.85 м.

А для того, чтобы более точно определить зону действия момента в пролете, сначала нужно определить сечения, в которых изгибающий момент равен нулю.

Согласно уравнению моментов:

М03 = A3x3 - q3c(k3 + x3)2/2 = 5740х3 - 1293.2(1.7 + х3)2/2 = 0

тогда

x3(1) = 0.591 м, х3(2) = 4.889 м (методика решения квадратных уравнений здесь не приводится).

Таким образом длина стержней для армирования консолей составит k3 + b + 0.59 + 0.23 = 1.8 + 0.2 + 0.59 + 0.23 = 2.82 м (округлим до 3 м). А длина стержней для армирования под средней опорой В3: 2(l3 - x3(2)) + 0.4 + 0.75 = 2(6.2 - 4.89) + 0.2 +0.75 = 3.35 м (округлим до 3.5 м)

Как видим, более точный расчет позволяет сэкономить около 20-25% арматуры.

Для армирования 1 метра ширины плиты в пролетах принимаем все те же 5 стержней арматуры диаметром 10 мм по вышеуказанным причинам. При этом как минимум половину стержней по конструктивным соображениям следует доводить до опор, тогда длина таких стержней составит как минимум 6.2-6.4 м. А длина остальных стержней должна составлять как минимум x3(2) - x3(1) + 2lan(10)= 4.89 - 0.59 + 0.46 = 4.76 м (округлим до 5 м). Впрочем для унификации длину всех стержней можно принять одинаковой: b + x3(2) + lan(10) = 0.2 + 4.89 + 0.23 = 5.32 м (округлим до 5.5 м), но стержни при монтаже каркаса следует располагать "елочкой" - один заводится на опору А3, следующий на опору В3 и так далее.

Подбор арматуры для сечения 2-2

Снова определим значение моментов на опорах (под стенами) и в пролете. Примем при определении моментов длину консолей k2 = 1.4 м и пролет l2 = 3.8 м. А значение опорной реакции А2 уменьшим на 825.5·0.2 = 165.1 кг. Тогда опорная реакция А составит А2 = 2865 - 165.1 ≈ 2700 кг. При q2c = 825.5 кг/м

МА2 = Мс2 = q2сk22/2 = 825.5·1.42/2 = 809 кгс·м или 80900 кгс·см

МВ2 = q2с(k2 + l2)2/2 - A2l2 = 825.5(1.4 + 3.8)2/2 - 2700·3.8 = 900.8 кгс·м или 90080 кгс·см

Мx2 = qx22/2 - A(x2 - k2) = 825.5·3.272/2 - 2700(3.27 - 1.4) = -600.4 кгс·м или -60040 кгс·см

где x2 = A2/q2с = 2700/825.5 = 3.27 м.

Значения моментов в данном сечении значительно меньше, чем в сечении 3-3 и это логично, так как и нагрузка, а главное, пролеты в этом сечении значительно меньше. Да и разница в значениях моментов незначительна, поэтому достаточно подобрать сечение арматуры по максимальному моменту, но при этом следует помнить, что относительная высота сечения изменится, так как у нас уже имеется арматура в сечении 3-3. При h'o2 = 13 см

А0В2 = MВ2/bh'202Rb = 90080/(100·132·117) = 0.045

Данное значение достаточно близко к полученному А0п3, потому мы без дальнейших скрупулезных расчетов примем армирование 1 погонного метра ширины плиты в данном сечении 5 стержнями диаметром 10 мм.

Согласно уравнению моментов:

М02 = A2x2 - q2с(k2 + x2)2/2 = 2700х2 - 825.5(1.4 + х2)2/2 = 0

тогда

x2(1) = 0.63 м, х2(2) = 3.11 м.

Таким образом длина стержней для армирования консолей составит k2 + b + 0.59 + 0.23 = 1.4 + 0.2 + 0.63 + 0.23 = 2.46 м (округлим до 2.5 м). Длина стержней для армирования под средней опорой В2: 2(l2 - x2(2)) + b + 0.46 = 2(3.8 - 3.11) + 0.2 + 0.46 = 2.04 м (с учетом того, что приняли несколько завышенное сечение арматуры и с учетом некоторого защемления арматуры в растянутом слое бетона мы можем округлить длину стрежней до 2 м). Минимальная длина стержней для армирования пролетов: 0.2 + 3.11 + 0.23 = 3.54 м (округлим до 3.5 м) при армировании "елочкой".

Подбор арматуры для сечения 1-1

В данном сечении наша плита может рассматриваться как однопролетная балка с консолями. Снова определим значение моментов на опорах (под стенами) и в пролете. Примем при определении моментов длину консолей k1 = 1.4 м и пролет l1 = 7.8 м. При q1c = 520.91 кг/м изменение опорной реакции А составит 520.91·0.2 = 104.2 кг, тогда А1 = 2865 - 104.2 = 2758 кг

МА1 = Мс1 = q1сk12/2 = 520.91·1.42/2 = 375 кгс·м или 37500 кгс·см

Мx1 = q1сx12/2 - A1(x1 - k1) = 520.91·5.32/2 - 2758(5.3 - 1.4) = -3440 кгс·м или -344000 кгс·см

где x1 = A1/q1с = 2758/520.91 = 5.3 м (с учетом того, что мы не учитываем ширину опор, то значение х совпадает с серединой плиты, как это впрочем и должно быть).

При ho1 = 18 см

А0п = Mх/bh301Rb = 344000/(100·182·117) = 0.091

тогда при ηп1 = 0.952

Faп1 = Mх1/ηh01Rs = 344000/(0.952·18·3600) = 5.57 см2.

Данному требованию удовлетворяют 5 стержней диаметром 12 мм, площадью сечения 5.65 см2.

Согласно уравнению моментов:

М01 = A1x1 - q1с(k1 + x1)2/2 = 2758х1 - 520.91(1.4 + х1)2/2 = 0

тогда

x1(1) = 0.26 м, х1(2) = 7.54 м.

При таких параметрах проще завести все стержни за грань опор. А армирование консолей из тех же соображений унификации принимаем такое же как и в сечении 2-2.

Вывод: для армирования плиты потребуется арматура 3 различных диаметров. С целью унификации и повышения надежности можно принять арматуру 2 диаметров 18 мм и 12 мм. В итоге схема армирования плиты при использовании арматуры 3 диаметров будет выглядеть примерно так:

схема армирования фундаментной плиты

Рисунок 397.1

Конструктивная арматура, необходимая для поддержания рабочей арматуры верхнего слоя на схемах не показана. А между тем в нашей плите большая часть арматуры находится сверху, а не как у плиты перекрытия - снизу. Поэтому для поддержания рабочей арматуры верхнего слоя в проектном положении при ходьбе и при заливке бетонной смесью и при вибрировании бетонной смеси желательно уложить стержни диаметром 8-12 мм (это может быть и гладкая арматура) с шагом не более 500 мм, тогда появляется возможность приварить поперечную арматуру для поддержания арматуры верхнего слоя. расстояние между стержнями поперечной арматуры как правило также не должно превышать 500 мм. В нашем случае для упрощения монтажа мы можем половину консольных стержней уложить по всей длине плиты, тогда сетка конструктивной арматуры составит 400х400 мм, а в узлах конструктивной сетки приварить поперечную арматуру. Кроме того для общей устойчивости арматурного каркаса желательно приварить несколько наклонных стержней.

После этого составляется спецификация арматуры, необходимой для армирования фундаментной плиты. Выглядит такая спецификация примерно так (с учетом конструктивной арматуры):

Поз.

Обозначение

Наименование

Кол.

Масса ед./всего, кг

Примечания

1

 

 Ø12А400 l = 3000

56

2.66/149

 

1'

 

 Ø10А400 l = 6600

56

4.07/228

расчетно-конструктивная

2

 

 Ø18А400 l = 3500

56

7/392

 

3

 

 Ø10А400 l = 5500

112

3.39/380.1

 

4

 

 Ø10А400 l = 2500

82

1.54/126.5

 

4'

 

 Ø10А400 l = 6700

82

4.1/339

расчетно-конструктивная

5

 

 

 

 

набирается из расчетно-конструктивной

6

 

 Ø10А400 l = 3500

74

2.16/159.8

 

7

 

 Ø12А400 l = 8400

45

7.46/335.7

 

8

 

 Ø12А400 l = 200

2360

0.1776/419.1

поперечная конструктивная

 

 

 бетон класса В20

 

 

43.5 м3

 

Таким образом для армирования фундаментой плиты потребуется примерно 2529.2 кг арматуры, из них около 700 кг на чисто конструктивную арматуру, и 43.5 м3 бетона. При стоимости 1 тонны арматуры около 700-800$ и кубометра бетона около 50$ фундаментная плита обойдется примерно в 4000$ (и это без учета стоимости работ).

И тут возникает вопрос: так как дом относительно небольшой и сравнительно легкий, а пролеты между стенами не малые, то может имеет смысл использовать для дома ленточный фундамент? Вопрос хороший, но ответ на него дается отдельно.

И еще одна маленькая, но очень важная деталь: плиту желательно бетонировать сразу, а это больше 40 м3 бетона. В связи с этим более целесообразно сначала выполнить бетонную подготовку из бетона класса В5 - В7.5 (если есть такая возможность) толщиной не менее 100 мм (во всяком случае так рекомендуется "Руководством по проектированию плитных фундаментов каркасных зданий..." , да и возможные неровности основания это сгладит и упростит монтаж арматуры. Кроме того по бетонной подготовке можно выполнить качественную гидроизоляцию, если есть такая необходимость. Тогда минимальная толщина защитного слоя для нижней арматуры должна быть не менее 35 мм и соответственно высоту плиты можно уменьшить еще на 35 мм и расход бетона более высокого класса на 6.6 м3, но тогда придется пересчитать сечение арматуры верхнего слоя.

Тут могут возникнуть и другие вопросы: например, как рассчитать плиту если план дома не симметричный? В этом случае для упрощения расчетов можно по-прежнему рассматривать плиту как симметричную с той разницей, что длина пролетов будет равна большему значению из имеющихся, что приведет к повышенному запасу прочности, а значит и завышению стоимости дома. Или заказать расчет у специалиста, что также приведет к дополнительной трате средств.

doctorlom.com