Качественная обработка, ссылочное оглавление, текстовый слой. Исходные сканы и файлы обработки тут: https://yadi.sk/d/o0WzdrthoGhYD Иной вариант обработки тут: https://yadi.sk/i/tHT2Hf1ooGhfL Текстовый слой таков, что даже если в оригинале слово разделено переносом, то в самом слое оно целое, соответветственно найдётся при поиске. Двойных пробелов нет, поэтому можно искать по сочетанию слов (или их частей разделённых пробелом).
Нельзя начать строительство просто так, без предварительного проектирования и расчетов. Точнее, можно, но результат будет плачевным. Возведение даже простой конструкции всегда начинается с ее проекта, на основе которого и будет проводиться строительство. Если же говорить о доме, то здесь нужно разрабатывать не один, а несколько проектов. В том числе, необходимо и проектирование фундамента дома и его основания.
Фундаменты могут быть разные – плитные, ленточные, свайные, столбчатые. У каждого типа– свои особенности, преимущества и недостатки, сфера применения. Соответственно, проектирование свайных фундаментов (на забивных или буронабивных сваях) будет отличаться от проектирования, к примеру, фундамента на винтовых сваях.
Проект составляется для многих целей. Прежде всего, это необходимо для выбора типа основания, подходящего для дома. Выбор проводится с учетом типа здания, его этажности, материалов, из которых будут возводиться стены, перекрытия, крыша. Кроме того, учитывается ландшафт участка, тип почв (грунта) на нем, для этого проводятся геологические изыскания.
Второй момент: расчет фундаментов позволяет закупить точно необходимое количество материалов, рассчитать время, за которое он будет построен, что сокращает затраты на строительство. Поэтому, даже если кажется, что проект дорого стоит, эти расходы полностью оправданы и окупают себя в ходе строительных работ. Экономия на материалах при грамотном проектировании составляет до 40% от бюджета, выделенного на строительство фундамента.
И, конечно же, конструирование фундамента позволяет точно рассчитать максимальную нагрузку на него, а значит, построить действительно надежное основание для дома.
Как уже было сказано выше, в строительстве применяются фундаменты разного типа, и проектирование каждого из них имеет свои особенности.
Евгений Стрелец-Стрелецкий, Роман Водопьянов
Наряду с крупными программными комплексами, такими как ЛИРА и МОНОМАХ, на современном рынке программного обеспечения широкой популярностью пользуются программыспутники. Эти программы предоставляют инженеру и исследователю возможность выполнять компьютерные расчеты множества частных задач, которые возникают в процессе работы над проектом сооружения и обычно не вписываются в структуру больших программных комплексов. Необходимость в решении указанных задач возникает как при выработке расчетной модели конструкции, так и при анализе результатов расчета целостной модели сооружения, как при экспертной оценке проектов, так и при техническом надзоре за возведением здания, а также во многих других ситуациях, имеющих место при проектировании и строительстве. Программыспутники необходимы инженеру в повседневной работе и обеспечивают поддержку в принятии оптимального конструктивного решения.
Полная конфигурация ЭСПРИ версии 1.0 содержит более 60 программ, которые тематически структурированы по десяти разделам: «Математика», «СтатикаДинамикаУстойчивость», «Сечения», «Нагрузки», «Сталь», «Железобетон», «Камень», «Дерево», «Фундамент», «Мосты». В каждом разделе содержатся программы, выполняющие расчетные и справочные функции. В какойто мере ЭСПРИ можно сравнить с широко известным (и давно не переиздававшимся) расчетнотеоретическим справочником проектировщика.
Здесь представлены программы, относящиеся к разделу «Фундамент». В настоящее время этот пакет содержит девять программ. Далее приведены их краткое описание и возможности.
Программа предназначена для определения осадки и коэффициентов постели С1 и С2 под центром фундамента или фундаментной плиты по заданным грунтовым условиям и нагрузке.
Вычисление осадки производится по схемам линейного полупространства и линейно деформированного слоя. В расчетах реализованы положения, изложенные в СП 501012004 и СНиП 2.02.0183*.
В соответствии с вычисленной осадкой определяются коэффициенты постели С1 и С2 по нескольким методикам для моделей грунта Винклера и Пастернака. Реализована возможность определения коэффициентов постели при динамических воздействиях.
Вычисление коэффициентов постели
Программа предназначена для расчета фундаментных конструкций на грунтовом основании. Трехмерная модель грунтового массива создается программой автоматически на основании инженерногеологических условий площадки строительства.
Для описания площадки строительства задается база характеристик слоев грунта (ИГЭ), указываются расположение и отметки устья скважин, характеристика слоев грунта, составляющего ту или иную скважину.
По заданным нагрузкам на грунт от проектируемой фундаментной конструкции, а также по нагрузкам от близлежащих сооружений определяются переменные по области проектируемой конструкции, глубина сжимаемой толщи и осадка по схеме линейноупругого полупространства. На основании полученных осадок по нескольким методикам вычисляются коэффициенты постели упругого основания С1 и С2 для моделей Винклера и Пастернака.
Полученные результаты отображаются в виде изополей осадок, усредненных модулей деформации и коэффициентов Пуассона, а также изополей глубин сжимаемой толщи и коэффициентов постели.
Вычисление переменных коэффициентов постели
Программа позволяет определить несущую способность одиночной сваи прямоугольного или кольцевого сечения. Рассчитываются сваистойки и висячие сваи в соответствии с положениями СНиП 2.02.0385 «Свайные фундаменты», МГСН 2.0701 и «Руководства по проектированию свайных фундаментов».
Результатами вычислений являются несущая способность сваи, ее осадка, в том числе с учетом взаимовлияния в группе свай, а также погонная жесткость сваи.
Расчет одиночной сваи
Программа предназначена для расчета одиночной сваи по деформациям и на устойчивость от совместного действия вертикальной и горизонтальной сил и момента согласно приложению 1 СНиП 2.02.0385 «Свайные фундаменты». Предполагается, что в процессе нагружения система «свая — грунт» проходит две стадии напряженнодеформированного состояния. На первой стадии грунт, окружающий сваю, работает как упругая линейнодеформируемая среда. Упругие свойства грунта характеризуются коэффициентом постели, линейно возрастающим по глубине. На второй стадии в верхней части грунта, окружающего сваю, образуется область предельного равновесия (пластическая зона). Жесткость грунта в пределах области предельного равновесия характеризуется прочностным коэффициентом пропорциональности, ниже грунт работает упруго, как в первой стадии. За предельное состояние системы «свая — грунт» принимается момент образования в свае пластического шарнира в пределах или на границе области предельного равновесия грунта.
В результате расчета определяются горизонтальное перемещение и угол поворота головы сваи. В случае расчета по одной стадии производится проверка устойчивости грунта согласно п. 13 приложения 1 СНиП 2.02.0385. При учете развития второй стадии напряженнодеформированного состояния грунта производится расчет несущей способности сваи в соответствии с условием H ≤ Fd / γk, где H — расчетное значение поперечной силы, действующей на сваю; Fd — несущая способность сваи, определяемая в соответствии с требованиями п. 10; γk — коэффициент надежности, принимаемый равным 1,4.
Расчет сваи на совместное действие нагрузок
Программа позволяет рассчитать осадку куста свай в соответствии со СНиП 2.02.0385 «Свайные фундаменты». Осадка в данном случае определяется как для условного фундамента на естественном основании с использованием расчетной схемы в виде линейнодеформируемого полупространства в соответствии с требованиями СНиП 2.02.0183*. Результатом расчета является значение осадки куста свай. Полученные размеры условного фундамента, его собственный вес, глубина сжимаемой толщи и величина осадки помещаются в отчет.
Расчет «Определение осадки фундамента»
Программа предназначена для вычисления главных и эквивалентных напряжений σ1, σ2, σ3 по заданным значениям тензора напряжений: σx, σy, σz, τxy, τxz, τyz.
Помимо главных напряжений для заданных расчетных характеристик грунта определяются предельные и эквивалентные напряжения по одному из заданных условий предельного равновесия — условия Кулона — Мора или модифицированные условия Кулона — Мора. Кроме того, вычисляются углы наклона главных напряжений к текущим осям, а также модуль полных деформаций в соответствии с теорией упругости линейнодеформируемого полупространства.
Программа предназначена для определения устойчивости однородного грунтового склона по плоской (1й тип) или цилиндрической (2й тип) поверхности скольжения.
В результате вычисляются координаты оползневой поверхности, оползневое давление и предельные характеристики склона — критическая высота, критический угол площадки скольжения, суммарный вес грунтового массива над плоскостью разрушения, суммарная сдвиговая сила от веса грунта по плоскости разрушения, предельная сила устойчивости склона, длина плоскости или цилиндрической поверхности разрушения. Вычисляются также критическое расстояние от подошвы склона до верхней точки безопасного (относительно безопасного) удаления, коэффициент запаса устойчивости (устойчивой прочности) и средние нормальное и сдвиговое напряжения на площадке скольжения, а также другие параметры.
Устойчивость многослойного склона
Программа предназначена для определения устойчивости многослойного грунтового склона по цилиндрической поверхности скольжения. Расчет производится методом, разработанным Шведским обществом геомеханики. Данный метод представлен в работе А.В. Шаповала «Оптимизация алгоритма расчета устойчивости откосов и склонов».
В результате определяются координаты оползневой поверхности, оползневое давление, а также коэффициенты запаса при статическом и динамическом нагрузкам, суммарная активная нормальная сила, активная составляющая сдвиговых сил, реактивная составляющая от сцепления и радиус поверхности скольжения.
Программа предназначена для расчета подземной части сооружений, возводимых методом «стена в грунте». Расчетная модель является плоской и состоит из грунтового массива, элементов стенового ограждения и анкерных креплений стен. Задаются размеры грунтового массива и характеристики грунтов в нем, размеры котлована и уровни его отрывки, нагрузки на поверхность грунта, размеры и параметры материала и сечения стеновых элементов и анкеров, а также силы натяжения в анкерных креплениях.
В текущей версии программы допускается не более четырех анкеров с каждой стороны стенового ограждения и не более четырех уровней отрывки котлована.
После ввода исходных данных выполняется автоматическая триангуляция области грунтового массива с соответствующей разбивкой элементов стен и анкеров. Массив моделируется треугольными конечными элементами грунта, а стены и анкеры — стержневыми элементами.
Расчет ограждения котлована
Расчет производится последовательно по стадиям. На первой стадии производится расчет полной модели (без анкеров) на собственный вес и заданную нагрузку. Дальнейшее количество стадий определяется автоматически и зависит от заданных уровней выемки грунта и отметок установки анкеров. То есть пока не вынут грунт (демонтаж), анкер не может быть установлен (монтаж).
По ходу расчета выполняется накопление перемещений в узлах, напряжений в элементах грунта и усилий в элементах стен и анкеров по стадиям.
Результаты расчета представляются в графическом виде — эпюры усилий в стенах и изополя напряжений в грунте по стадиям.
Результаты оформляются в виде отчета.
Представленный раздел ЭСПРИ «Фундаментные конструкции и основания» насыщается новыми программами. Расширяются функциональные возможности программ, учитываются предложения, пожелания и замечания пользователей. Программы пакета снабжены контекстной справкой. Реализована возможность одновременной работы в локальной сети нескольких пользователей.
Сопровождение ЭСПРИ осуществляет группа специалистов высокой квалификации, имеющих многолетний опыт расчета конструкций и обеспечивающих поддержку пользователей по всему спектру возникающих вопросов.
САПР и графика 10`2009
sapr.ru
Руководство по проектированию свайных фундаментов
Классическим руководящим документом при разработке свайных фундаментов является издание еще советского строительного института Госстроя СССР — НИИОСП им. Н.М. Герсеванова. Изданное в 1980 году, это «Руководство по проектированию свайных фундаментов» достаточно подробно описывает суть столбчатых фундаментом и порядок их разработки и строительства.
Особо отметим, что свайные фундаменты делятся на два больших подвида:
Каждый из этих типов фундаментов имеет особенности в проектировании и строительстве. Кроме того, особая методика проектирования имеется и для свайных фундаментов, подверженных динамическим нагрузкам. Также специальная методика применяется и при строительстве на неустойчивых грунтах, например, имеющих полости или склонных к оползням.Таким образом, руководство Госстроя вполне подходит для индивидуального жилищного и бытового строительства на нормальных участках местности.
Согласно классическому руководству – свайный фундамент может проектироваться и строиться на предварительно искусственно уплотненном грунте и может принимать вид свайного поля.
Руководство рекомендует использовать типовые конструкции, которые наиболее популярны в вашем регионе.
Госстрой Советского Союза в этом руководстве особо предупреждает, что свайный фундамент может быть построен взамен ленточного. По мнению разработчиков руководства целесообразность замены ленточного фундамента столбчатым может возникать, если глубина проектируемого ленточного фундамента превышает 1,7 метра.
С особым вниманием необходимо отнестись к возможности проектирования столбчатого фундамента в том случае, если на вашем участке имеется слабый грунт, а также при повышенном уровне грунтовой воды.
Столбчатый фундамент на свайном грунте
Наиболее подходящими грунтами для строительства свайных фундаментов являются малосжимаемые их типы. Практически идеально подходят под строительство свайного фундамента, например скальный грунт, плотный песок, галечник).
На начальном этапе проектирования свайных фундаментов в обязательном порядке проводятся работы по инженерно-геологическим и гидрогеологическим изысканиям.
В бытовых условиях это предусматривает бурение или выкапывание исследовательского шурфа, глубина которого не может быть менее 2,5 метров. Проводить такие исследования лучше всего весной в период максимальной высоты грунтовых вод. В ходе исследования вы определите не только, какие виды грунтов расположены на разных горизонтах под вашим участком, но и на каком уровне поднимается вода на участке при весеннем повышении.
Перед строительством свайного фундамента внимательно изучите почву
В том случае, если вы зафиксируете высокий уровень грунтовых вод, то вам необходимо предпринять меры для защиты конструкции фундамента от коррозии.
При подготовке проекта вам прежде всего необходимо определить количество свай для фундамента и их тип. Также необходимо определить их параметры, такие. Как длина и сечение. Кроме того, вычисляется и несущая способность свайного фундамента и каждой из его составных частей.
Итак, перед тем как приступить к проектированию свайного фундамента, вы должны подготовить следующие исходные данные:
Схема расположения свай на участке
Результаты инженерно-геологического исследования на строительном участке,
При разработке свайного фундамента, в основе которого буду лежать деревянные сваи необходимо в обязательном порядке предусмотреть обработку конструкции специальными асептическими растворами, а также составом, предохраняющим сваи от поражения их насекомыми-древоточцами.
При разработке проекта свайного основания, имеющего в своем составе деревянные сваи их необходимо размещать на глубине, которая минимум на полметра будет ниже, чем минимальный зафиксированный уровень грунтовых вод на вашем участке.
Согласно классическому руководству при строительстве фундаментов могут использоваться следующие вид свай:
Забивная свая — образец
Прежде всего это так называемые забивные сваи, то есть такие сваи, которые заранее изготавливаются на промышленных предприятиях или на строительном участке и затем забиваются в землю при помощи различных механизированных устройств, например механических молотов или вибропогружателей.
Также используются «сваи-оболочки». Такая свая также изготавливается на промышленном предприятии, однако внутри она имеет пустоту, которая впоследствии, после размещения в земле заливается бетонным раствором.
Схема возведения буронабивных свай
Наиболее популярными в индивидуальном строительстве являются буронабивные сваи. Их название образовано от двух действий, с помощью которых они формируются. На первом этапе происходит бурение – на строительном участке бурятся отверстия под будущие сваи. Они должны быть расположены под углами будущего здания, под местами примыкания стен. На протяженных прямых участках несущих стен опорные сваи должны располагаться не реже, чем через 2,5 метра.
После бурения отверстий в их нижней части может формироваться полость., более широкая по диаметру, чем основная свая. Это делается для того, чтобы свая имела большую площадь опоры и давила на грунт с меньшей силой. На дно скважины засыпается подушка из песка, которая после проливки водой тщательно утрамбовывается.
В качестве опалубки буронабивных свай используются различные конструкции. Так, часто делают по стенам квадратной в сечении ямы традиционную деревянную опалубку. Если скважина бурится при помощи механических буровых устройств – опалубку для свай имеет смысл сделать из труб большого диаметра. В таком строительстве могут использоваться трубы из практически любых материалов: асбестоцемента, металла или морозоустойчивого пластика.
Внутри опалубки монтируется силовой каркас из металлических прутьев и впоследствии заливается бетонным раствором с высокой маркой прочности.
Винтовые сваи — образец
Очень популярным в последнее время становятся винтовые сваи. Они были описаны еще в классическом советском «Руководстве по проектированию свайных фундаментов», но в 21-м веке стали де-факто стандартом для возведения легких строений на приусадебных участков. Винтовая свая представляет собой большой шуруп, который может быть вкручен в землю без применения механических устройств, простой мускульной силой.
fundamentt.com