Балка – элемент в инженерии, представляющий собой стержень, который нагружают силы, действующие в направлении, перпендикулярном стержню. Деятельность инженеров зачастую включает в себя необходимость расчета прогиба балки под нагрузкой. Этой действие выполняется для того, чтобы ограничить максимальный прогиб балки. На сегодняшний день в строительстве могут использоваться балки, изготовленные из разных материалов. Это может быть металл или дерево. Каждый конкретный случай подразумевает под собой разные балки. При этом расчет балок на прогиб может иметь некоторые отличия, которые возникают по принципу разницы в строении и используемых материалов. Сегодняшнее индивидуальное строительство подразумевает под собой широкое применение балок, изготовленных из дерева. Практически каждое строение содержит в себе деревянные перекрытия. Балки из дерева могут использоваться как несущие элементы, их применяют при изготовлении полов, а также в качестве опор для перекрытий между этажами. Ни для кого не секрет, что деревянная, так же как и стальная балка, имеет свойство прогибаться под воздействием нагрузочных сил. Стрелка прогиба зависит от того, какой материал используется, геометрических характеристик конструкции, в которой используется балка, и характера нагрузок. Допустимый прогиб балки формируется из двух факторов: Проводимые при строительстве расчеты на прочность и жесткость позволяют максимально эффективно оценить то, какие нагрузки сможет выдерживать здание в ходе эксплуатации. Также эти расчеты позволяют узнать, какой именно будет деформация элементов конструкции в каждом конкретном случае. Пожалуй, никто не будет спорить с тем, что подробные и максимально точные расчеты – это часть обязанностей инженеров-строителей, однако с использованием нескольких формул и навыка математических вычислений можно рассчитать все необходимые величины самостоятельно.Расчет деревянной балки: виды профиля. Традиционные балки. Расчет нагрузки на деревянную балку
Расчет балок на прогиб. Максимальный прогиб балки: формула
Типы
Деревянные балки
Для того чтобы произвести правильный расчет прогиба балки, нужно также брать во внимание тот факт, что в строительстве понятия жесткости и прочности являются неразрывными. Опираясь на данные расчета прочности, можно приступать к дальнейшим расчетам относительно жесткости. Стоит отметить, что расчет прогиба балки – один из незаменимых элементов расчета жесткости.
Обратите ваше внимание на то, что для проведения таких вычислений самостоятельно лучше всего использовать укрупненные расчеты, прибегая при этом к достаточно простым схемам. При этом также рекомендуется делать небольшой запас в большую сторону. Особенно если расчет касается несущих элементов.
На самом деле алгоритм, по которому делается подобный расчет, достаточно прост. В качестве примера рассмотрим несколько упрощенную схему проведения расчета, при этом опустив некоторые специфические термины и формулы. Для того чтобы произвести расчет балок на прогиб, необходимо выполнить ряд действий в определенном порядке. Алгоритм проведения расчетов следующий:
Как видите, все действия достаточно просты и вполне выполнимы.
Для того чтобы составить расчетную схему, не требуется больших знаний. Для этого достаточно знать размер и форму поперечного сечения элемента, пролет между опорами и способ опирания. Пролетом является расстояние между двумя опорами. К примеру, вы используете балки как опорные брусья перекрытия для несущих стен дома, между которыми 4 м, то величина пролета будет равна 4 м.
Вычисляя прогиб деревянной балки, их считают свободно опертыми элементами конструкции. В случае балки перекрытия для расчета принимается схема с нагрузкой, которая распределена равномерно. Обозначается она символом q. Если же нагрузка несет сосредоточенный характер, то берется схема с сосредоточенной нагрузкой, обозначаемой F. Величина этой нагрузки равна весу, который будет оказывать давление на конструкцию.
Геометрическая характеристика, которая получила название момент инерции, важна при проведении расчетов на прогиб балки. Формула позволяет вычислить эту величину, мы приведем ее немного ниже.
При вычислении момента инерции нужно обращать внимание на то, что размер этой характеристики зависит от того, какова ориентация элемента в пространстве. При этом наблюдается обратно пропорциональная зависимость между моментом инерции и величиной прогиба. Чем меньше значение момента инерции, тем больше будет значение прогиба и наоборот. Эту зависимость достаточно легко отследить на практике. Каждый человек знает, что доска, положенная на ребро, прогибается гораздо меньше, чем аналогичная доска, находящаяся в нормальном положении.
Подсчет момента инерции для балки с прямоугольным сечением производится по формуле:
J=b*h^3/12, где:
b – ширина сечения;
h – высота сечения балки.
Определение максимальной нагрузки на элемент конструкции производится с учетом целого ряда факторов и показателей. Обычно при вычислении уровня нагрузки берут во внимание вес 1 погонного метра балки, вес 1 квадратного метра перекрытия, нагрузку на перекрытие временного характера и нагрузку от перегородок на 1 квадратный метр перекрытия. Также учитывается расстояние между балками, измеренное в метрах. Для примера вычисления максимальной нагрузки на деревянную балку примем усредненные значения, согласно которым вес перекрытия составляет 60 кг/м², временная нагрузка на перекрытие равна 250 кг/м², перегородки будут весить 75 кг/м². Вес самой балки очень просто вычислить, зная ее объем и плотность. Предположим, что используется деревянная балка сечением 0,15х0,2 м. В этом случае ее вес будет составлять 18 кг/пог.м. Также для примера примем расстояние между брусьями перекрытия равным 600 мм. В этом случае нужный нам коэффициент составит 0,6.
В результате вычисления максимальной нагрузки получаем следующий результат: q=(60+250+75)*0,6+18=249 кг/м.
Когда значение получено, можно переходить к расчету максимального прогиба.
Когда проводится расчет балки, формула отображает в себе все необходимые элементы. При этом стоит учитывать, что формула, используемая для расчетов, может иметь несколько иной вид, если расчет проводится для разных типов нагрузок, которые будут оказывать влияние на балку.
Сначала приведем вашему вниманию формулу, используемую для расчета максимального прогиба деревянной балки с распределенной нагрузкой.
f=-5*q*l^4/384*E*J.
Обратите внимание, что в данной формуле Е – это постоянная величина, которая получила название модуль упругости материала. Для древесины эта величина равна 100 000 кгс/ м².
Продолжив вычисления с нашими данными, использованными для примера, получим то, что для балки из древесины, сечение которой составляет 0,15х0,2 м, а длина равна 4 м, величина максимального прогиба при воздействии распределенной нагрузки равна 0,83 см.
Обращаем внимание, что когда производится расчет прогиба с учетом схемы с сосредоточенной нагрузкой, формула приобретает следующий вид:
f=-F*l^3/48*E*J, где:
F – сила давления на брус.
Также обращаем внимание на то, что значение модуля упругости, используемое в расчетах, может различаться для разных видов древесины. Влияние оказывают не только порода дерева, но и вид бруса. Поэтому цельная балка из дерева, клееный брус или оцилиндрованное бревно будут иметь разные модули упругости, а значит, и разные значения максимального прогиба.
Вы можете преследовать разные цели, совершая расчет балок на прогиб. Если вы хотите узнать пределы деформации элементов конструкции, то по завершении расчета стрелки прогиба вы можете остановиться. Если же ваша цель – установить уровень соответствия найденных показателей строительным нормам, то их нужно сравнить с данными, которые размещены в специальных документах нормативного характера.
Обратите внимание на то, что балки из двутавра применяются несколько реже в силу их формы. Однако также не стоит забывать, что такой элемент конструкции выдерживает гораздо большие нагрузки, чем уголок или швеллер, альтернативой которых может стать двутавровая балка.
Расчет прогиба двутавровой балки стоит производить в том случае, если вы собираетесь использовать ее в качестве мощного элемента конструкции.
Также обращаем ваше внимание на то, что не для всех типов балок из двутавра можно производить расчет прогиба. В каких же случаях разрешено рассчитать прогиб двутавровой балки? Всего таких случаев 6, которые соответствуют шести типам двутавровых балок. Эти типы следующие:
Расчет максимального прогиба одинаковый, будь это стальная балка или же элемент из другого материала. Главное - помнить о тех величинах, которые специфические и постоянные, как к примеру модуль упругости материала. При работе с металлическими балками, важно помнить, что они могут быть изготовлены из стали или же из двутавра. Прогиб металлической балки, изготовленной из стали, вычисляется с учетом, что константа Е в данном случае составляет 2·105Мпа. Все остальные элементы, вроде момента инерции, вычисляются по алгоритмам, описанным выше.
В качестве примера рассмотрим схему, в которой балка находится на двух опорах, а к ней прикладывается сосредоточенная сила в произвольной точке. До момента прикладывания силы балка представляла собой прямую линию, однако под воздействием силы изменила свой вид и вследствие деформации стала кривой.
Предположим, что плоскость ХУ является плоскостью симметрии балки на двух опорах. Все нагрузки действуют на балку в этой плоскости. В этом случае фактом будет то, что кривая, полученная в результате действия силы, также будет находиться в этой плоскости. Данная кривая получила название упругой линии балки или же линии прогибов балки. Алгебраически решить упругую линию балки и рассчитать прогиб балки, формула которого будет постоянной для балок с двумя опорами, можно следующим образом.
F(z)=(P*a2*b2)/(6E*J*l)*(2*z/a+z/b-z3/a2*b)
f(z)=(-P*a2*b2)/(6E*J*l)*(2*(l-z)/b+(l-z)/a-(l-z)3/a+b2), где Р – прикладываемая сила, Е – модуль упругости материала, J – осевой момент инерции.
В случае балки с двумя опорами момент инерции вычисляется следующим образом:
J=b1h23/12, где b1 и h2 – значения ширины и высоты сечения используемой балки соответственно.
В заключение можно сделать вывод о том, что самстоятельно вычислить величину максимального прогиба балки разных типов достаточно просто. Как было показано в этой статье, главное - знать некоторые характеристики, которые зависят от материала и его геометрических характеристик, а также провести вычисления по нескольким формулам, в которых каждый параметр имеет свое объяснение и не берется из ниоткуда.
fb.ru
Все фото из статьи
Если вы самостоятельно решили сделать в строящемся или уже построенном доме деревянное перекрытие, то вам обязательно следует разобраться, как подобрать деревянные балки в соответствии с их сечением и длиной пролёта.
Кроме того, такой профиль, даже если у него одинаковое сечение, не обязательно идентичен по прочности, ведь это может быть, е примеру, цельный массив или клееный брус, что, вполне естественно, сказывается на его характеристиках. Мы предлагаем вам научиться считать самостоятельно, а ещё хотим предложить вам к просмотру видео в этой статье по нашей теме.
Перекрытие — конструкция пола по деревянным балкам с утеплением и вентзазором
Нагрузка на деревянную балку осуществляется сверху вниз
Примечание. Слово «балка», которое широко применяется в русской строительной терминологии, означает несущий конструктивный элемент, который, главным образом, работает на изгиб.На практике представляет собой горизонтальный профиль, несущий на себе определённую степень тяжести различных элементов конструкции.
Виды бруса (слева направо): из цельного массива дерева, клееный
Примечание. Если при строительстве дома вы хотите обустроить балкон из дерева, то подберите соответствующие размеры деревянных балок по длине.Их выступающие концы будут служить опорой для основания конструкции.Но расчет деревянной консольной балки вам здесь не нужен – будет вполне достаточно сечения для прочности перекрытия.
Монтаж перекрытия
Предел прочности деревянных балок зависит не только от их сечения, но и от их длины, так, максимальный пролет деревянной балки в оптимальном режиме не должен превышать 4м, но, тем не менее, существуют и допуски на определённых условиях.
А вот оптимальное сечение профиля не квадратное, как многие считают, а прямоугольное, где соотношение высоты к ширине составляет 1,4:1. Если балка заделывается в стену, то её следует закрыть по кругу гидроизоляцией, не трогая при этом торец, но в любом случае конец, который туда заводится, должен быть не менее 12 см, кроме того, его желательно закрепить анкерным болтом для жёсткости.
Если вы производите расчёты поперечного сечения своими руками, вам следует учитывать, что здесь идёт в учёт нагрузка от собственной массы, которая обычно составляет 190-220 кг/м2, а эксплуатационная нагрузка берётся за 200 кг/м2. Направление установки определяется по более короткому расстоянию пролёта, а шаг определяется наличием стояков в каркасе (одна горизонталь на одну вертикаль).
Длина пролёта (м) | 2,5 | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 6,0 |
Шаг монтажа (м) ↓ | Поперечное сечение (мм) | ||||||
0,6 | 75х100 | 75х150 | 75х200 | 100х200 | 100х200 | 125х200 | 150х225 |
1,0 | 75х150 | 100х150 | 100х175 | 125х200 | 150х200 | 150х225 | 175х250 |
Таблица под нагрузку 400 кг/м2
Нагрузка (кг/м пог.) | 3,0 | 3,5 | 4,0 | 4,5 | 5,0 | 5,5 | 6,0 |
Поперечное сечение (мм) | |||||||
150 | 50х140 | 50х160 | 60х180 | 80х180 | 80х200 | 100х200 | 100х220 |
200 | 50х160 | 50х180 | 70х180 | 70х200 | 100х200 | 120х220 | 140х220 |
250 | 60х160 | 60х180 | 70х200 | 100х200 | 120х200 | 140х220 | 160х220 |
Более слабые нагрузки
Примечание. Как видите, деревянная балка с пролетом 6 метров может использоваться при нагрузках от 250 до 400 кг/м2.Но это крайний случай – гораздо надёжнее, если есть предположение возникновения больших нагрузок, использовать центральные опоры.
Монтаж подпоры
Ширина пролёта (м) | Шаг (м) | Сечение бревна (см) |
2 | 1 | 13 |
0,6 | 11 | |
2,5 | 1 | 15 |
0,6 | 13 | |
3 | 1 | 17 |
0,6 | 14 | |
3,5 | 1 | 19 |
0,6 | 16 | |
4 | 1 | 21 |
0,6 | 17 | |
4,5 | 1 | 22 |
0,6 | 19 | |
5 | 1 | 24 |
0,6 | 20 | |
5,5 | 1 | 25 |
0,6 | 21 | |
6 | 1 | 27 |
0,6 | 23 | |
6,5 | 1 | 29 |
0,6 | 25 | |
7 | 1 | 31 |
0,6 | 27 |
Параметры для круглого бревна при расчетной нагрузке 400 кг/м2
Порода дерева | Сорт | Диаметр поперечного сечения (мм) | Максимальный пролёт (м) | ||||||||
Есть горизонтальные связи у стояков | Есть перекрёстные связи у стояков | Есть горизонтальные и перекрёстные связи у стояков | |||||||||
Хвойные | 2 | Расстояние между балками (мм) | |||||||||
300 | 400 | 600 | 300 | 400 | 600 | 300 | 400 | 600 | |||
38х89 | 1,86 | 1,72 | 1,58 | 1,99 | 1,81 | 1,58 | 1,99 | 1,81 | 1,58 | ||
38х140 | 2,92 | 2,71 | 2,49 | 3,14 | 2,85 | 2,49 | 3,14 | 2,85 | 2,49 | ||
38х184 | 3,54 | 3,36 | 3,20 | 3,81 | 3,58 | 3,27 | 3,99 | 3,72 | 3,27 | ||
38х235 | 4,17 | 3,96 | 3,77 | 4,44 | 4,17 | 3,92 | 4,60 | 4,29 | 4,00 | ||
38х286 | 4,75 | 4,52 | 4,30 | 5,01 | 4,71 | 4,42 | 5,17 | 4,82 | 4,49 |
Общие параметры для пролётов перекрытий
Пояснение. Настоящая таблица актуальна для тех случаев, когда распределённая равномерно временная нагрузка составляет не более 2,4 кПа=0,0024мПа=244,73 кгс/м2
Монтаж перекрытий
Несмотря на различные современные технологии конструктивных особенностей деревянных балок, всё-таки в России отдают предпочтение цельному массиву дерева, и основной причиной такого предпочтения является низкая цена, по которой в РФ можно приобрести пиломатериалы для населения.
Да и какой смысл строить дом из цельномассивного бруса или бревна и при этом перекрытия монтировать из клееного профиля или с добавками стальных укрепляющих ламелей.
Декоративные деревянные балки
Таблицы, которые вы видели выше, не распространяются на декоративные балки, которые просто держат потолок, но при этом со стороны чердака нет абсолютно никаких нагрузок, а в некоторых случаях чердак отсутствует вообще.
Поэтому, здесь поперечное сечение начинается от размера 100×50 мм и регулируется исключительно фантазией дизайнера и особенностями освещения. На верхнем фото вы видите именно такую конструкцию, где балки имеют 100×50 мм с ячейкой каркаса 100 см.
Для крепежа деревянных балок используется металлическая фурнитура. Среди этих элементов основными являются стальные скобы, анкерные болты, металлические перфорированные полосы, простые и усиленные уголки. Весь этот крепёж для усиления жёсткости потолочной конструкции фиксируется при помощи саморезов разного сечения, в зависимости от потребности.
rubankom.com
Сбор нагрузок производится всегда, когда нужно рассчитать несущую способность строительных конструкций. В частности, для перекрытий нагрузки собираются с целью определения толщины, шага и сечения арматуры железобетонного перекрытия, сечения и шага балок деревянного перекрытия, вида, шага и номера металлических балок (швеллер, двутавр и т.д.).
Сбор нагрузок производится с учетом требований СНиПа 2.01.07-85* (или по новому СП 20.13330.2011) "Актуализированная редакция" [1].
Данное мероприятие для перекрытия жилого дома включает в себя следующую последовательность:
1. Определение веса "пирога" перекрытия.
В "пирог" входят: ограждающие конструкции (например, монолитная железобетонная плита), теплоизоляционные и пароизоляционные материалы, выравнивающие материалы (например, стяжка или наливной пол), покрытие пола (линолеум, паркет, ламинат и т.д.).
Для определения веса того или иного слоя нужно знать плотность материала и его толщину.
2. Определение временной нагрузки.
К временным нагрузкам относятся мебель, техника, люди, животные, т.е. все то, что способно двигаться или переставляться местами. Их нормативные значения можно найти в таблице 8.3. [1]. Например, для квартир жилых домов нормативное значение равномерно распределенной нагрузки составляет 150 кг/м2.
3. Определение расчетной нагрузки.
Делается это с помощью коэффициентов надежности по нагрузки, которые можно найти в том же СНиПе. Для веса строительных конструкций и грунтов - это таблица 7.1 [1]. Что касается равномерно распределенной временной нагрузки и нагрузки от материалов, то здесь коэффициент надежности берется в зависимости от нормативного значения по пункту 8.2.2 [1]. Так, по нему, если вес составляет менее 200 кг/м2 коэффициент равен 1,3, если равен или более 200 кг/м2 - 1,2. Также данный пункт регламентирует значение нормативной нагрузки от веса перегородок, которая должна равняться не менее 50 кг/м2.
4. Сложение.
В конце необходимо сложить все расчетные и нормативные значения с целью определения общего значения для дальнейшего использования их в расчете на несущую способность.
В случае сбора нагрузок на балку ситуация та же. Только после получения конечных значений их нужно будет преобразовать из кг/м2 в кг/м. Делается это с помощью умножения общей расчетной или нормативной нагрузки на величину пролета.
Для того, чтобы материал был более понятен, рассмотрим два примера. В первом примере соберем нагрузки на перекрытие, а во втором на балку.
А после рассмотрения примеров с целью экономии времени можно воспользоваться специальным калькулятором. Он позволяет в режиме онлайн собрать нагрузки на перекрытие, стены и балки перекрытия.
Имеется перекрытие, состоящее из следующих слоев:
1. Многопустотная железобетонная плита - 220 мм.
2. Цементно-песчаная стяжка (ρ=1800 кг/м3) - 30 мм.
3. Утепленный линолеум.
На перекрытие опирается одна кирпичная перегородка.
Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) перекрытия. Для наглядности весь процесс сбора нагрузок произведем в таблице.
Вид нагрузки | Норм. | Коэф. | Расч. |
Постоянные нагрузки: - железобетонная плита перекрытия (многопустотная) толщиной 220 мм - цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм - утепленный линолеум - перегородки Временные нагрузки: - жилые помещения |
290 кг/м2
54 кг/м2 5 кг/м2 50 кг/м2
150 кг/м2 |
1,1
1,3 1,3 1,1
1,3 |
319 кг/м2
70,2 кг/м2 6,5 кг/м2 55 кг/м2
195 кг/м2 |
ИТОГО | 549 кг/м2 | 645,7 кг/м2 |
Имеется перекрытие, которое опирается на деревянные балки, состоящее из следующих слоев:
1. Доска из сосны (ρ=520 кг/м3) - 40 мм.
2. Линолеум.
Шаг деревянных балок - 600 мм.
Также на перекрытие опирается перегородка из гипсокартонных листов.
Определение нагрузок на балку производится в два этапа:
1 этап - составляем таблицу, как описано выше, т.е. определяем нагрузки, действующие на 1 м2.
2 этап - преобразовываем нагрузки из 1кг/м2 в 1 кг/п.м.
Вид нагрузки | Норм. | Коэф. | Расч. |
Постоянные нагрузки: - дощатый пол из сосны (ρ=520 кг/м3) толщиной 40 мм - линолеум - перегородки Временные нагрузки: - жилые помещения |
20,8 кг/м2 5 кг/м2 50 кг/м2
150 кг/м2 |
1,1 1,3 1,1
1,3 |
22,9 кг/м2 6,5 кг/м2 55 кг/м2
195 кг/м2 |
ИТОГО | 225,8 кг/м2 | 279,4 кг/м2 |
Определение нормативной нагрузки на балку:
qнорм = 225,8кг/м2*(0,3м+0,3м) = 135,48 кг/м.
Определение расчетной нагрузки на балку:
qрасч = 279,4кг/м2*(0,3м+0,3м) = 167,64 кг/м.
Поделиться статьей с друзьями:
svoydomtoday.ru