Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Разбираемся в многообразии видов солнечных панелей. Солнечные панели аморфные


Кремниевые солнечные батареи из аморфного кремния

Кремниевые солнечные батареи, основу которых составляет аморфный кремний, являются результатом технологического совершенствования методик изготовления солнечных элементов. Это, преимущественно, тонкопленочные модели. Если сравнивать их с «классическими» на основе кристаллов, технологии их изготовления имеют существенные отличия. Аморфный кремний, вещество, которому можно придать любую желаемую форму — парообразующий гидрид. Его горячие пары остаются на подложке, а образования обычных кристаллов не происходит. Это обеспечивает резкое снижение производственных затрат.

Аморфный и кристаллический кремний: главное отличие

Аморфные солнечные панели обладают существенным отличием от моно- и поликристаллических. Оно заключается в том, что прямой поток света, исходящий от Солнца, таким батареям не требуется. Они прекрасно генерируют рассеянный свет, исходящий от светила, которое закрыто облаками.

Благодаря гибкости, на них легко наносятся современные полупроводниковые элементы. Они могут эффективно работать в условиях сильной загазованности воздушной среды. Или на производстве, где воздух, по тем или иным причинам, перенасыщен аэрозольными веществами.

Гибкая панель

Из истории создания

Это может показаться удивительным, но сейчас уже начинают активно совершенствовать третье поколение таких панелей.

Коротко обо всех трех можно рассказать таким образом:

  • Поколение №1 — солнечная батарея с одним переходом. Минус — срок работы не более десяти лет и низкая производительность с 5%-м КПД.
  • Поколение №2 — также элементы с одним переходом, но срок работы стал вдвое больше — 20 лет, а КПД увеличился до 8.
  • Поколение №3 — высокоэффективные тонкопленочные батареи с КПД до 12%. Могут работать еще более длительное время. Считается, что они имеют в перспективе очень большое будущее.

Кстати, благодаря широким возможностям технологии, кремниевый слой напыляется и на жесткое, и на гибкое основание. Именно поэтому в тонкопленочных моделях напыление применяется чаще всего. Хотя стоят они, конечно, очень дорого.

Аморфные солнечные батареи обладают удивительной способностью к поглощению неяркого, рассеянного светового потока. Они активно применяются в тех регионах, где преобладает прохладная и пасмурная погода. При высоких температурах они не теряют уровня своей производительности. Хотя панели из арсенида галлия по-прежнему их в этом превосходят.

На крыше

Подводя итоги: достоинства аморфных аккумуляторов и их дальнейшие перспективы

Итак, кремниевые солнечные батареи с уникальным свойством аморфности имеют следующие перспективные преимущества:

  1. Меньше нагреваются при высокой температуре. Следовательно, не теряют производительности, перерабатывая большее количество электроэнергии. Эффективность кристаллических модулей при сильном нагреве, как известно, резко снижается, со значительной потерей мощности.
  2. Больше вырабатывают энергии при слабом уровне света. Кристаллические солнечные батареи в условиях рассеянного светового потока уже могут перестать работать вообще. Аморфные модули в условиях дождя и облачности накапливают на 10-20% больше энергии.
  3. Они почти незаметны на зданиях. Размер их минимален, а внешний вид, похожий на пленку или тонкое стекло, легко можно скрыть или замаскировать.
  4. У них минимум брака, так как производство гораздо более простое. Кристаллические же модули свариваются между собой методом пайки. И это — до сих пор их слабое место, которое исправить невозможно.
  5. Они лучше переносят временное или частичное затенение и теряют при этом меньше мощности.

На фоне всех неоспоримых преимуществ недостаток у таких панелеи всего один, но пока еще весьма существенный. КПД у них, в любом случае, меньше, чем у кристаллов — как минимум, в 2 раза. Это является основным препятствием для их широкого применения.

Монтаж

Сфера применения

Несмотря на меньший показатель КПД, по сравнению с кристаллическими солнечными аккумуляторами, аморфные модели уже постепенно находят достойную нишу применения.

Как уже было отмечено, их рекомендуется использовать там, где часто наблюдается облачная и пасмурная погода. Они будут неплохо работать в условиях рассеянного или отраженного света. Также годятся они и для жаркого климата, так как лучше переносят нагревание и теряют при этом меньше мощности.

На катере

При необходимости интеграции аккумуляторов в здание такой вариант становится просто незаменимым, так как при первом взгляде от тонированных стекол их не отличить. Они дают широкий простор дизайнерским и архитектурным решениям, если речь идет о современных зданиях, в конструкцию которых они прекрасно впишутся. Это отличная отделка фасадов, которые при желании могут быть частично прозрачными.

Уровень деградации у аморфных модулей аналогичен кристаллическим. Считается, что за десятилетний период применения показатель их мощности снизится только на 10% (по одному проценту в год), со сроком работы до 25 лет. Конечно, они не могут быть использованы в качестве постоянных источников энергии. Но роль альтернативных ее накопителей выполняют очень даже неплохо.

batteryk.com

Аморфные солнечные батареи (из аморфного кремния)

Солнечные батареи начали изготавливать с 1954 г. Сначала это были фотоэлектрические элементы на основе полупроводникового кремния. Намного позже была разработана технология получения аморфных солнечных батарей. Солнечные батареи целиком не изготавливаются, а собираются из отдельных элементов, преобразующих свет в электричество.

малогабаритная батарея

Современная малогабаритная солнечная батарея

Единичный фотоэлектрический полупроводниковый преобразователь изготавливается из металла кремния высочайшей степени очистки. Чаще всего в технологическом процессе очистки получают кристаллический кремний в виде цилиндра диаметром несколько десятков миллиметров.Из цилиндра нарезают диски, имеющие толщину в доли миллиметра.

Кремниевые диски легируют нанесением на их поверхность различных примесей, как металлических, так и неметаллических. При этом в пластине кремния формируются зоны с разной степенью насыщенности электронами, с n-проводимостью (электронной) и «дырками» с p-проводимостью.

«Дырки» – это металл, из которого дозированными примесями удалили часть электронов и получили p-проводимость, т.е. положительную, а металл с избытком электронов имеет n-проводимость, т.е. отрицательную или электронную.

кремниевый ФЭП

Структура кремниевого ФЭП

Комбинацией примесей, их составом, очередностью нанесения, толщиной и мн.др. в толще пластины получают p-n переходы или гетеропереходы. В результате этих процессов полупроводниковые пластины получают способность при облучении светом давать электрический ток. Так были созданы фотоэлектрические преобразователи (ФЭП).

К концу первого десятилетия 21-го века КПД кремниевых солнечных батарей промышленного производства, в зависимости от производителя, достиг величины в 28-30%. Эту величину значительно снижает (до 20-22%) нагрев от солнечного освещения, без которого обойтись невозможно.

дом, оснащённый батареями

Некоторые недостатки кремниевых элементов

Металлический кремний полупроводниковой чистоты – материал очень дорогой, т.к. при производстве он проходит множество стадий очистки.

При резке монокристалла значительная часть материала уходит в стружку – толщина пластины около 0,25 – 0,4 мм.

При облучении ФЭП светом, падающая на элемент энергия преобразуется в электричество не полностью:

  • часть отражается с поверхности обратно;
  • часть проходит «насквозь» без поглощения и преобразования;
  • часть вызывает тепловые колебания кристаллической решетки;
  • часть расходуется на рекомбинацию (взаимное уничтожение «дырки» и электрона с выделением тепла) фото-пар в поверхностном слое и т.д.

Эти явления уменьшают КПД кремниево-кристаллических ФЭП до 12-15%, иногда до 22-25%.

Производство ФЭП из аморфного кремния

Сырьем для производства являются подложки из различных материалов:

  • металла, часто из нержавеющей стали;
  • полимерных пленок разного состава;
  • керамики специальных марок;
  • стекла высокой степени очистки;
  • кристаллов искусственного сапфира и т.п.

Сырьем для главного слоя аморфных ФЭП является силан – кремневодород. Его химическая формула Sih5. Кремний обрабатывают водородом и получают соединение типа (a-Si:H) или гидрогенизированный кремний.

Для нанесения аморфного кремния на подложку силан в закрытой камере подвергают воздействию тлеющего электрического разряда. Он испаряется, и пары кремния осаждаются на подложку. Толщина слоя около 1 мкм и менее. Температура осаждения около 250 – 400°С, поэтому для подложек можно выбрать разные материалы невысокой стоимости.

гибкий фотоэлемент

Гибкая солнечная батарея

Производство безотходное, поэтому цена продукции относительно невелика.

Процесс напыления позволяет производить ФЭП значительно большей площади, чем диски из кремния, диаметром в десятки миллиметров. Модули, изготовленные по такой технологии, могут иметь площадь до нескольких квадратных метров.

Гидрогенизация кремния позволяет получить полупроводниковые свойства у очень тонких пленок, толщиной до 1 мкм, чему способствует увеличенное в 15 – 20 раз оптическое поглощение этого материала по отношению к кремнию.

аморфный кремний

Солнечная батарея с использованием аморфного кремния на стеклянной подложке

Гибкий ФЭП

Гибкий ФЭП на основе аморфного кремния

Особенности тонкопленочных солнечных батарей

Солнечные батареи, изготовленные из аморфного кремния, для работы не требуют облучения прямым потоком солнечного света. Им достаточно рассеянного света, например, света Солнца, закрытого облаками. В результате этого такие батареи за год вырабатывают на 10 – 15% больше электроэнергии, чем традиционные кремниевые батареи. Они работают при большой запыленности воздуха или при насыщении его аэрозолями.

Элементы малой мощности использоваться начали еще в конце прошлого века в калькуляторах, электронных часах, в карманных радиоприемниках и т.п.

Для создания тонкого слоя полупроводникового материала для солнечной энергетической панели нужно в сотни раз меньше, и это тоже уменьшает конечную цену.

Использование энергетических солнечных батарей большой мощности позволяет уменьшить зависимость от энергетических компаний, а при наличии в государстве законов по альтернативной энергетике – даже зарабатывать, подавая в промышленную сеть избыток энергии.

solarb.ru

О солнечных панелях (батареи)

Солнечные панели или модули (батареи) - состоят из соеденённых последовательно, а иногда и параллельно-последовательно фото-электрических ячееек, Сами солнечные элементы изготавливаются из полупроводниковых материалов, которые напрямую преобразуют солнечный свет в электричество.

Солнечные панели бывают различных видов, но в основе выработки электроэнергии лежит кремний, правда в последнее время появились и другие типы. Но большая часть из выпускаемых солнечных панелей вырабатывают энергию на основе кремния. Кремний это полупроводник, он широко распространен на земле в виде песка, который является диоксидом кремния, также известного под именем кварцит. Кремний широко применяется в современной электронике, процессоры, транзисторы, из которых делается вся современная вычислительная техника сделаны на основе кремния.

>

Солнечный элемент состоит из металлической подложки, на которую нанесён тыльный плюсовой контакт, на него нанесён тонкий слой полупроводника P типа. Далее идёт разделяющий. Следующий слой N типа. И завершает этот пирог сетка, собирающая плюсовые выводы N перехода. На элементы нанесено анти-отражающее покрытие, которое и придаёт элементам характерный темно-синий цвет.

Солнечные элементы разделяются по типу, бывают монокристаллические, поликристаллические, и из аморфного кремния (тонкопленочный). Различие между этими формами в том, как организованы атомы кремния в кристалле. Различные по типу элементы имеют разный КПД преобразования энергии света. Моно и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у солнечных элементов, изготовленных из аморфного кремния. Но КПД моно и поли может значительно разнится из-за качества изготовления элементов, в принципе это уместно ко всем типам солнечных элементов.

>

Моно-кристаллические элементы дороже в производстве так-как процесс выращивания кристаллов происходит при более высокой температуре, и процент очищения кремния составляет практически 100 %. К тому-же кристаллы выращиваются строго в одном направлении, что повышает кпд до 22-24% при направленном свете. Но эффективность таких элементов резко снижается когда свет падает не перпендикулярно, а под углом. КПД монокристаллических панелей для космической отрасли по некоторым данным достигло 38%, но КПД массово выпускаемых моно-панелей около 17-22%

Поли-кристаллические элементы дешевле в производстве так-как процесс образования кристаллов происходит при низкой температуре. Но кристаллы образуют неоднородную массу и разнонаправлены. Разнонаправленность кристаллов снижает КПД, но такие элементы лучше работают при ненаправленном и рассеянном свете. Из-за более низкого КПД поликристаллические панели имеют примерно на 10% больше площади, соответственно в пасмурную погоду они на 10% эффективнее чем моно. КПД массово выпускаемых поликристаллических панелей сейчас 12-18%.

Вообще чем хуже КПД тем больше нужно солнечных батарей, а вот цена будет примерно одинаковой так-как панели с высоким КПД дороже. Но в пасмурную погоду КПД в основном зависит от площади самих панелей, и чем больше их тем лучше. Но разница будет очень маленькой так-как мощность панелей при плотно затянутом тучами небе падает в 15-20 раз. И например если у вас панель на 100 ватт, то она будет выдавать всего 5-6 татт, и тут уже не важно что там лучше или хуже вырабатывает электроэнергию так-как разница в 10% даст в реале преимущество всего в 0,5 ватта. А если массив солнечных батарей будет на 2кВт, то разница будет всего в 10-20 ватт.

Аморфные солнечные панели имеют низкий КПД, около 6%, но они заметно ниже по цене, и имеют преимущество при рассеянном свете. Кремний в этих солнечных батареях расходуется значительно меньше так-как наносится методом напыления материала в вакууме. При этом наносить материал можно на стекло, пластик или металл. По-этому в основном гибкие солнечные панели именно аморфные. Но аморфный кремний значительно быстрее деградирует, и в первые два года панели могут потерять до 20% мощности, далее интенсивность снижения мощности замедляется.

В последние годы разработаны новые типы материалов для солнечных элементов. Например, тонкопленочные фотоэлектрические элементы из медь-индий-диселенида и из теллурида кадмия. Эти типы СП в последнее время также коммерчески используются. Технологии их производства постоянно развиваются. За последнее десятилетие КПД тонкопленочных элементов вырос примерно в 2 раза, и уже достигает 12%

Так-же последние технологии используют гибридные методы. Так появились элементы, которые имеют как кристаллический переход, так и тонкий полупрозрачный аморфный переход, расположенный над кристаллическим. Так как кристаллы и аморфный кремний наиболее эффективно преобразуют только часть спектра света, и эти спектры немного отличаются, применение таких гибридных элементов позволяет повысить общий КПД солнечного элемента.

e-veterok.ru

Солнечные элементы: фотоэлементы для солнечных батарей

Солнечные элементы – это части батарей, которые генерируют электрический ток. Появились они сравнительно недавно, в XIX веке, и только сейчас их начали использовать в качестве недорогого, но эффективного способа добычи энергоресурсов. Принцип работы солнечных батарей довольно прост. Ими можно оснастить жилое или нежилое помещения. Существуют различные виды данных элементов питания. Разберем их более подробно.

Элементы солнечных батарей

Зачастую энергия солнечной панели используется для дома и его нужд. Вырабатываемого электрического тока достаточно для двухэлементной бойлерной системы, холодильника, телевизора и прочих бытовых приборов.

Солнечные лучи – это экологически чистое «топливо». Ведь в процессе работы модуль солнечной батареи не выделяет обилие вредных выхлопов, углекислый газ и не расходует невосполнимые природные ископаемые.

Стоит понимать, что солнечные батареи складываются из множества модулей. И то, что мы видим на крыше зданий или на стенах, является только частью системы.

Подключение системы

Из чего состоит солнечная система электроснабжения:

  1. Солнечные ячейки, складывающиеся в панели. Это те видимые нам батареи, которые крепятся на крышу или стены.
  2. Аккумулятор. Данный элемент в системе необходим для накапливания лишней энергии, например, в ясный день. В пасмурную погоду, когда батареи работают не на полную мощность, ток на бытовые нужды берется из АКБ.
  3. Контроллер регулирует заряд аккумулятора, подсказывает владельцу системы, что заряда недостаточно или слишком много. Излишнее напряжение губительно для аккумулятора.
  4. Преобразователь постоянного тока в переменный (инвертор) необходим для работоспособности бытовых приборов. Ведь не все из них способны работать на постоянном потоке заряженных частиц.

Подключая солнечные модули, необходимо уже изначально определиться с местом их расположения, видом, количеством бытовой техники, необходимостью контролера АБК.

Стоит понимать, что такая системы является наборной, и вы с легкостью можете установить еще не один солнечный модуль.

Принцип работы солнечных батарей

Человечество научилось получать энергию из ископаемых, потоков воды и порывов ветра, дошли и до применения световых лучей. Существуют даже солнечные модули, которые поглощают невидимый инфракрасный спектр и работают ночью. Всепогодные батареи эффективны в пасмурную погоду, туман, дождь.

Принцип работы любой батареи – преобразование лучей солнца в электрический импульс.

Принцип работы

Зачастую солнечные модули работают на кристаллах кремния, и этому есть объяснение. Данный металл чувствителен к воздействию лучей, он недорог в добыче, а КПД батарей составляет 17-25%. Кристалл кремния при попадании на него солнечных лучей образует направленное движение электронов. При средней площади батареи 1-1,5 м² можно достичь на выходе напряжение в 250 Вт.

В настоящее время применяется не только кремний, но и соединения селена, меди, иридия и полимеров. Но широкого распространения они не получили, даже несмотря на КПД в 30-50%. Все потому, что они очень дороги. Для электрификации обычного дачного или загородного дома отлично подойдет кремниевая фотоэлектрическая панель.

Читайте также:Плюсы и минусы солнечной энергии

Виды солнечных батарей

Такие аккумуляторы постоянно видоизменяются. Эта область модифицируется и подвергается инновационным решениям.

Именно поэтому существует много видов солнечных панелей.

Монокристаллические

Данные батареи обладают хорошим КПД. Каждая ячейка являет собой отдельный кристалл кремния. Поверхность батареи слегка выпуклая, насыщенного синего цвета. Фотоэлектрические панели этого типа имеют самую высокую цену, которая обуславливается сложностью технологии. Ведь все кристаллы развернуты в одном направлении.

Монокристаллическая

Необходимо будет дополнительное оборудование, которое будет разворачивать комплекс панелей в зависимости от положения Солнца на горизонте. Из-за необходимости прямых лучей такие элементы устанавливают на хорошо освещенных участках или возвышенностях.

Средний срок эксплуатации – 25 лет.

Поликристаллические (multi-Si)

Солнечные модули данного вида обладают неравномерно насыщенным синим цветом из-за разной направленности кристаллов кремния. Они дешевле монокристаллических аналогов, обладают хорошим КПД, их не нужно разворачивать к солнцу. В пасмурную погоду или облачность они показывают лучшие результаты, нежели вышеописанный вид.

Поликристаллическая

Средний срок эксплуатации без потери качеств – 15-20 лет.

Аморфные (полимерные солнечные батареи)

В данном случае используются не цельные кристаллы, а гидрид кремния. Его наносят на твердую или гибкую подложку. Преимуществами является низкая стоимость. К тому же, полимерный солнечный элемент можно нанести на любую гибкую подложку. Значит, вы можете по максимуму использовать скат крыши, неровные поверхности.

Аморфная

Фотоэлектрическая структура полимерного кремния позволяет поглощать свет даже рассеянный. Аморфные солнечные батареи выгодно ставить в условиях севера, короткого светового дня, в областях с агрессивными атмосферными условиями.

Существуют и другие, более редкие разновидности.

Органические

Эти солнечные батареи только изучаются. Активные разработки появились в последнем десятилетии, поэтому достоверных данных насчет гарантированного срока эксплуатации у производителей нет. Солнечный элемент использует органическую основу – соединения углерода.

Органическая

Некоторые виды солнечных панелей данного строения обладают хорошим КПД, они пластичны, экологичны, просты в утилизации и значительно дешевле кремниевых аналогов.

Безкремниевые

Изготовлены на основе редких металлов. Вместо кремния применяются соединения теллура, селена, меди, индия. Данные металлы редкие и дорогие, поэтому стоимость батарей очень высокая. Однако панели этого типа могут работать в широком температурном диапазоне.

Сравнение КПД батарей разного типа

Разновидность панели Максимальное значение КПД
Монокристаллические 20-25%
Поликристаллические 15-20%
Аморфные 6-7% (в некоторых случаях до 15%)
Органические 12-15%
На основе редких металлов 10-20%, в зависимости от применяемого металла. Некоторые панели могут выдавать до 40%

Как подобрать солнечную панель?

Как видите, типы солнечных батарей различны.

Подбирать устройство необходимо, исходя из многих факторов:

  • степени освещенности территории;
  • климата;
  • площади помещения;
  • количества бытовых приборов;
  • финансового бюджета;
  • площади крыши;
  • возможности пользования стационарными электросетями;
  • отдаленности от населенного пункта.

Естественно, если вы собираетесь поставить солнечные панели на дачу, где проводите время только летом, стоит побеспокоиться о безопасности вашего имущества.

Если у вас длинный световой день, хорошо освещаемая территория, то отдайте предпочтение моно- и поликристаллическим моделям. В холодных широтах приобретайте поликристаллические или полимерные фотоэлементы.

Установленные на крыше солнечные элементы

Читайте также:

Характеристики солнечных батарей

Виды подключения

Вы уже купили фотоэлементы для солнечных батарей, АКБ и все остальные составляющие. Осталось определиться с типом электроснабжения вашего жилища. Они бывают:

  1. Автономные. В данном случае ваш дом питается только от солнечных батарей и никак не связан с общей электрификацией.
  2. Смежные. Панели подключаются в общую сеть. Если бытовые приборы потребляют небольшое количество энергии, то стационарная сети не используется, ток берется из аккумулятора. В случае превышения потребностей электричество расходуется и из общей сети. Стоит учитывать, что без сети сами по себе батареи работать не будут.
  3. Комбинированные похожи на смежные. Но в данном случае излишек электроэнергии, получаемый панелями, идет не в аккумулятор, а в общую сеть.

Какую систему и панели выбрать, решать только вам. Перед покупкой проконсультируйтесь у нескольких специалистов, ведь такие системы приобретаются не на один год. При правильном подключении они будут радовать вас долгое время.

batteryk.com

Виды солнечных батарей: кремние, полмерные, аморфные

Дата публикации: 30 октября 2013

На вопрос «Что входит в состав системы электроснабжения, питающейся от солнечной энергии?», первое, что хочется ответить – это солнечные батареи. И это, безусловно, окажется правильным ответом. Конечно, подобная система включает в себя не только солнечные панели, туда также входят аккумуляторы, преимущественно гелевые (подробнее здесь), инверторы, контроллеры и другие устройства, каждое из которых выполняет свою функцию. Но солнечная панель – это тот элемент, с которого начинается весь процесс накопления и преобразования солнечной энергии. Вот только выбирая этот незаменимый элемент солнечной системы, каждый покупатель обязательно столкнется с проблемой выбора — «потеряться» в многообразии типов солнечных батарей несложно. Поэтому сегодняшнюю статью мы решили посвятить такой актуальной теме, как виды солнечных батарей.

Сегодня на рынке солнечных модулей представлено несколько различных образцов. Отличаются они друг от друга технологией изготовления и материалами, из которых их производят. На рисунке ниже приведена классификация солнечных батарей.

Солнечные батареи на основе кремния

Батареи, основой которым служит кремний, на сегодняшний день являются самыми популярными. Объясняется это широким распространением кремния в земной коре, его относительной дешевизной и высоким показателем производительности, в сравнении с другими видами солнечных батарей. Как видно из рисунка выше кремниевые батареи производят из моно- и поликристаллов Si и аморфного кремния.

Монокристаллические солнечные батареи представляют собой силиконовые ячейки, объединенные между собой. Для их изготовления используют максимально чистый кремний, получаемый по методу Чохральского. После затвердевания готовый монокристалл разрезают на тонкие пластины толщиной 250-300 мкм, которые пронизывают сеткой из металлических электродов (рис. нарезка). Используемая технология является сравнительно дорогостоящей, поэтому и стоят монокристаллические батареи дороже, чем поликристаллические или аморфные. Выбирают данный вид солнечных батарей за высокий показатель КПД (порядка 17-22%).

Для получения поликристаллов кремниевый расплав подвергается медленному охлаждению. Такая технология требует меньших энергозатрат, следовательно, и себестоимость кремния, полученного с ее помощью меньше. Единственный минус: поликристаллические солнечные батареи имеют более низкий КПД (12-18%), чем их моно «конкурент». Причина заключается в том, что внутри поликристалла образуются области с зернистыми границами, которые и приводят к уменьшению эффективности элементов.

В таблице 1 приведены основные различия между моно и поли солнечными элементами.

Таблица 1

Показатель Моно элементы Поли элементы
Кристаллическая структура Зерна кристалла параллельныКристаллы ориентированы в одну сторону Зерна кристалла не параллельныКристаллы ориентированы в разные стороны
Температура производства 1400 °С 800-1000 °С
Цвет Черный Темно-синий
Стабильность Высокая Высокая, но меньше, чем у моно
Цена Высокая Высокая, но меньше, чем у моно
Период окупаемости 2 года 2-3 года

Батареи из аморфного кремния

Если проводить деление в зависимости от используемого материала, то аморфные батареи относятся к кремниевым, а если в зависимости от технологии производства – к пленочным. В случае изготовления аморфных панелей, используется не кристаллический кремний, а силан или кремневодород, который тонким слоем наносится на материал подложки. КПД таких батарей составляет всего 5-6%, у них очень низкий показатель эффективности, но, несмотря на эти недостатки, они имеют и ряд достоинств:

  • Показатель оптического поглощения в 20 раз выше, чем у поли- и монокристаллов.
  • Толщина элементов меньше 1 мкм.
  • В сравнении с поли- и монокристаллами имеет более высокую производительность при пасмурной погоде.
  • Повышенная гибкость.

Помимо описанных выше видов кремниевых солнечных батарей, существуют и их гибриды. Так для большей стабильности элементов используют двухфазный материал, представляющий собой аморфный кремний с включениями нано- или микрокристаллов. По свойствам полученный материал сходен с поликристаллическим кремнием.

Из чего делают пленочные батареи?

Разработка пленочных батарей обусловлена:

  1. Потребностями в снижении стоимости солнечных батарей.
  2. Необходимостью в улучшении производительности и технических характеристик.

На основе CdTe

Исследования теллурида кадмия, как светопоглощающего материала для солнечных батарей начались еще в 70-х годах. В то время его рассматривали как один из оптимальных вариантов для использования в космосе, сегодня же батареи на основе CdTe являются одними из самых перспективных в земной солнечной энергетике. Так как кадмий является кумулятивным ядом, то дискуссии возникают лишь по одному вопросу: токсичен или нет? Но исследования показывают, что уровень кадмия, высвобождаемого в атмосферу, ничтожно мал, и опасаться его вреда не стоит. Значение КПД составляет порядка 11%. Согласитесь, цифра небольшая, зато стоимость ватта мощности таких батарей на 20-30% меньше, чем у кремниевых.

На основе селенида меди-индия

Как понятно из названия, в качестве полупроводников используются медь, индий и селен, иногда некоторые элементы индия замещают галлием. Такая практика объясняется тем, что большая часть производящегося на сегодня индия требуется для производства плоских мониторов. Именно поэтому с целью экономии индий замещают на галлий, который обладает схожими свойствами. Пленочные солнечные батареи на основе селенида меди-индия имеют КПД равный 15-20%. Следует иметь в виду, что без использования галлия эффективность солнечных батарей возрастает примерно на 14%.

На основе полимеров

Разработка данного вида батарей началась сравнительно недавно. В качестве светопоглощающих материалов используются органические полупроводники, такие как полифенилен, углеродные фуллерены, фталоцианин меди и другие. Толщина пленок составляет 100 нм. Полимерные солнечные батареи имеют на сегодняшний день КПД всего 5-6%. Но их главными достоинствами считаются:

  • Низкая стоимость производства.
  • Легкость и доступность.
  • Отсутствие вредного воздействия на окружающую среду.

Применяются полимерные батареи в областях, где наибольшее значение имеет механическая эластичность и экологичность утилизации.В таблице 2 приведены обобщенные данные о КПД разных видов солнечных батарей.

Таблица 2

КПД солнечных элементов, выпускаемых в производственных масштабах
Моно 17-22%
Поли 12-18%
Аморфные 5-6%
На основе теллурида кадмия 10-12%
На основе селенида меди-индия 15-20%
На основе полимеров 5-6%

Надеемся, что теперь Вы ясно представляете себе, из чего делают поли- и монокристаллические, пленочные, полимерные солнечные батареи и другие. Эта информация поможет Вам сделать правильный выбор при покупке солнечных модулей. Ведь система энергопотребления, основанная на солнечной энергии, является долговременной инвестицией. Переходя на альтернативные, в частности, солнечные источники энергии, Вы не только снижаете свои затраты на потребляемые энергоресурсы, но и делаете ощутимый вклад в чистоту окружающей нас среды.

Статью подготовила Абдуллина Регина

altenergiya.ru

Сравнение моно, поли и аморфных солнечных батарей

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты:

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи  будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли,  при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстро портятся – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Читайте также:

Методы производства солнечных элементов

Расчет мощности солнечных батарей

КПД солнечной батареи - что это?

 

b-eco.ru

Какие бывают типы, виды солнечных батарей и панелей

Содержание:

  1. Кремниевые солнечные батареи
  2. Плёночные солнечные батареи
  3. Что такое концентрационные солнечные модули
  4. Фотосенсибилизированные батареи
виды солнечных батарейКакие бывают виды солнечных панелей?

Сегодня различные типы солнечных панелей набирают всё больше и больше популярности. И не зря, ведь помимо того, что население планеты Земля начинает задумываться об экологических источниках энергии, солнечные панели ещё и становятся всё более и более энергоэффективными. Конечно, самое основное что входит в любую солнечную систему энергообеспечения — это панели или батареи, поэтому важно разбираться что к чему. Конечно, система намного сложнее и в неё входят всякие стабилизаторы, инверторы и прочее, однако это не основной момент.

типы солнечных батарейКакие бывают виды солнечных батарей или панелей?

На данный момент типы солнечных батарей составляют такое разнообразие и их такое великое множество, что каждый потребитель желающий обзавестись подобным источником энергии задаётся вопросом: “А как выбрать солнечную батарею? Какие есть солнечные батареи?” Об этом наша статья: мы постараемся особо не влезая в дебри технологий разобраться на какие типы делятся батареи или панели, питающиеся от энергии солнца, ведь рынок пестрит выгодными предложениями и желаем продать Вам ту или иную систему. В первую очередь различаются солнечные модули материалами, принципом работы и принципом производства. Так давайте же разбираться что и почему.

Кремниевые солнечные батареи

Такой тип солнечных панелей отличается в первую очередь своим материалом, который, как можно догадаться из названия, представлен кремнием. Сегодня это самые популярные батареи на рынке. Это связано с тем, что кремний сравнительно легкодоступный материал, он недорогой и при этом обладает хорошими показателями производительности, по сравнению с конкурентными видами солнечных модулей. Производят их не только из кремния, но и в том числе из моно, поликристаллов в также аморфного кремния. В чём разница?

Монокристаллические солнечные батареи

Для производства солнечных батарей монокристаллического типа используют очищенный, самый чистый кремний. Такой вид солнечной панели выглядит как силиконовые соты, или ячейки, которые соединены в одну структуру. После того, как очищенный монокристалл затвердевает, его разделяют на супер тонкие пластины, толщиной до 300 мкм. Такие готовые пластины соединены тонкой сеткой из электродов. В сравнении с аморфными батареями, такие стоят дороже, ведь технология их производства в разы сложнее. При этом такие батареи стоит выбрать хотя бы за их высокий коэффициент полезного действия(КПД). На уровне 20%. Да, для солнечных батарей это хороший показатель.

Поликристаллические солнечные панели

Для того чтобы получить поликристаллы, кремниевую субстанцию медленно охлаждают. Такой подход к технологии производства значительно дешевле чем в предыдущем типе панелей, поэтому и стоит этот вид дешевле. При этом для изготовления требуется меньше энергии, а это ещё раз благотворно действует на цену. Но чем-то же нужно жертвовать? Поэтому у таких батарей КПД ниже — до 18%. Связано такое падение коэффициента с образованиями внутри поликристалла, которые снижают эффективность. Для того ещё лучше разобраться в различиях между первым и вторым типом батарей, взгляните на таблицу:

Сравнительная таблица монокристаллических и поликристаллических солнечных панелей:

Фактор Монокристаллы Поликристаллы
Разница в структуре Кристаллы направлены в одну сторону, зёрна параллельны Кристаллы направлены в разную стороны, не параллельны
Стабильность работы Высокая Меньше
Стоимость Дорогостоящие батареи Также дорогостоящие, но дешевле
Окупаемость 2 года до 3х лет
КПД до 22% до 18%
Технология производства Совершеннее, сложнее, точнее Проще, отсюда и низкая стоимость

Аморфные солнечные панели или батареи из аморфного кремния

  • Данный вид солнечных батарей можно отнести как к кремниевым (потому что материал изготовления — кремний) так и к плёночным, ведь изготовлены они по принципу производства плёночных батарей. Но всё же отличия есть.
  • Здесь используются не кристаллы кремния, а так называемый силан (кремневодород). Его наносят на подложку, внутри батарей. КПД у такого вида солнечных батарей намного ниже — около 5%. Но всё не так плохо! Есть и преимущества, среди которых можно назвать: намного лучшее поглощение (в 20 раз лучше), лучше работает при отсутствии прямого солнца, когда пасмурно, эластичность панелей.
  • Также бывают сочетания моно и поликристаллических панелей с аморфными. Такое сочетание позволяет соединить преимущества двух различных типов. Например, батареи лучше работают, когда солнца недостаточно для обычных кристаллических батарей.

Плёночные солнечные батареи

Плёночные панели — это следующий шаг развития источников питания на солнечной энергии. Шаг, который продиктован в первую очередь необходимостью снижения цен на производство батарей и стремлением к повышению энергоэффективности.

Плёночные батареи на основе теллурида кадмия

  • Кадмий — это материал, который обладает высоким уровнем светопоглощения, открытый как материал для солнечных батарей в 70-х годах. На сегодняшний день, этот материал применяется уже не только в космосе, на околоземной орбите, но и активно используется в качестве материала для солнечных панелей обычного, домашнего пользования.
  • Самой главной проблемой в использовании такого материала является его ядовитость. Однако исследования говорят о том, что уровень кадмия. который уходит в атмосферу, слишком мал, чтобы наносить вред здоровью человека. Также, несмотря на низкий КПД в районе 10%, стоит единица мощности в таких батареях меньше, чем у аналогов.

Плёночные панели на основе селенида меди-индия

Тип солнечных батарей из таких материалов используют медь, индий, селен, как полупроводник. Кстати, индий — это основной, очень необходимый материал, который используется в производстве жидкокристаллических мониторов. Поэтому, оставляя такой материал для этих целей, часто используют галлий, который замещает индий по своим функциям. КПД здесь выше, чем у батарей из теллурида кадмия — около 20%.

Полимерные солнечные панели

Вид солнечных батарей, который не так давно был изобретён и начал производиться. Здесь проводниками выступают полифенилен, фуреллены, фталоцианин меди. При этом такая плёнка очень тонкая — около 100 нм. Несмотря на низкий уровень КПД, около 5%, всё же можно выделить причины, почему стоит выбирать этот тип солнечных батарей: Доступность материалов, дешевизна, отсутствие вредных выделений в атмосферу. Так что такие батареи отлично подходят потребителям, ведь обладают отличной эластичностью и экологичностью.

Сравнительная таблица: виды солнечных батарей и уровень КПД

Напоследок, хотелось бы сравнить коэффициенты полезного действия каждого типа солнечных батарей, но не забывайте, что помимо КПД есть много других факторов, которые могут охарактеризовать каждый тип как с хорошей, так и плохой стороны.

КПД в процентах
Монокристаллические 17-22%
Поликристаллические 12-18%
Аморфные 5-6%
Теллурид кадмия 10-12%
Селенид меди-индия 15-20%
Полимерные 5-6%

Что такое концентрационные солнечные модули?

Концентрационные модули помогают более эффективно использовать площадь солнечных панелей, получая экономию площади почти в два раза. Однако такая система осложнена необходимостью инсталляции механического модуля, который бы поворачивал линзы в сторону солнца. Особенно такие установки необходимы в местах, где прямое излучение солнца есть в достатке на протяжении всего года.

Фотосенсибилизированные батареи

Фотосенсибилизирующий краситель опять-таки помогает оптимизировать приём солнечной энергии, но при этом солнечные панели работающие по этому принципу, скорее напоминают процесс фотосинтеза в природе. Впрочем, пока что это только концептуальная идея, не имеющая воплощения. Кто знает, может пока Вы соберётесь покупать солнечные панели, она уже будут вовсю продаваться на рынке.

Ну что, разобрались какие бывают солнечные батареи? Надеемся, эта статья поможет Вам определиться, какую батарею поставить для дома, но если после прочтения у Вас возникло ещё больше вопросов — милости просим на наш сайт, где Вы найдёте всю информацию про солнечные батареи и источники питания, работающие на солнечной энергии а также про различные виды солнечных панелей.

www.solnpanels.com