Строительство Севастополь

Строительство в Севастополе — сообщество мастеров строителей и отделочников

 

Строительные работы в Севастополе

Простой станок для сверления печатных плат. Мини сверлильный станок для печатных плат своими руками чертежи


Простой станок для сверления печатных плат - В домашнюю мастерскую - Практика

 

Самый простой способ сверления печатных плат, держа двигатель с насаженным патроном для сверла в руках. При этом не раз ломались свёрла, и каждый радиолюбитель в мыслях ругал себя, и в следующий раз при изготовлении "печатки" - обязательно хотел что-то изменить в этом процессе. Каждый для себя решает сам, или что-то сделать из подручных средств, или приобрести готовое. Всё зависит от места жительства радиолюбителя. Например в сельской местности вдали от крупных центров, лучшим выходом из этого положения, это сделать станок своими руками.

highslide.js highslide.js

Основное требование к такому станку, это чтобы он справлялся со своей задачей, ну и при его изготовлении не требовалось сложных токарных деталей, так как не у всех есть возможность иметь доступ к токарному станку. Предлагаю Вам простую конструкцию сверлильного станочка для домашней мастерской, которую я увидел на просторах "инета", и которую повторить в домашних условиях не составит особого труда. Автора данной конструкции к сожалению не знаю, и если объявится, то с удовольствием укажу здесь его имя и выражу благодарность за простой конструктив. Размеры станочка; основание 140х90 мм, высота 150 мм. Со своей задачей он вполне справляется и на рабочем столе занимает очень мало места. При таких размерах он позволяет сверлить отверстия в платах, шириной до 150-170 мм. (длинна платы не ограничена), что вполне достаточно в радиолюбительской практике.

Основание станочка изготавливается из любого подручного материала, толщиной не менее 6-8 мм. Можно из текстолита, гетинакса, металла, фанеры. Если брать фанеру, то лучше толщиной не менее 10 мм. Размеры основания указаны выше, но Вы можете для своих нужд изменить эти размеры, как и основания, так и других деталей. В дальнейшем я просто буду указывать свои размеры. Вся конструкция собирается на П-образной стойке, для которой необходимо взять толстый материал, чтобы вся конструкция не пружинила и имела достаточную прочность.

highslide.js

В данной конструкции используется полоса металла, шириной 25 мм. и толщиной 4-5мм. Общая длинна её 140-150 мм. Согнута П-образно, крепление к основанию 30мм, высота 40 мм и оставшееся это длинна 70-80 мм.В стойке просверливаются три отверстия, одно снизу для её крепления к основанию, и два сверху для вертикальных штырей. Длинный штырь длинной 100 мм, диаметр 5 мм.

highslide.js

На длинный штырь одевается пружина. На коротком штыре нарезается резьба с двух сторон, для крепления штыря к стойке и вверху для контргайки. На этих двух штырях двигается подвижная часть с закреплённым на ней двигателем. Пружина должна быть такой жёсткости, чтобы поднимала вес подвижной части с двигателем.

highslide.js highslide.js

Подвижная часть изготавливается из полосы металла, толщиной не менее 1,5-2,0 мм, шириной 20 мм. Общая длинна полосы 100 мм, размеры по сгибам 20х40х40 мм. Сверлится сквозное отверстие для толстого штыря и отверстие для тонкого штыря. Кстати, штыри можно делать и одинакового диаметра, главное, чтобы материал был достаточно жёсткий, например валы от матричных принтеров. Хомут для крепления двигателя - по диаметру имеющегося двигателя, изготовлен из листового алюминия. У меня двигатель используемый для станка ДПМ-30.

Для питания такого двигателя вполне достаточно источника с напряжением 12 вольт, и самое главное, для него необходимо изготовить схему управления двигателем. Это чтобы без нагрузки двигатель медленно вращался и при касании сверлом платы - начинал работать на полную мощность. Схем таких сколько угодно, например можно выбрать отсюда. На мой взгляд лучше собирать последнюю.Хотя, чего греха скрывать, сам пока пользуюсь без такой схемы, у меня регулируемый БП и в паузах просто убираю напряжение.

highslide.js highslide.js

Рычаг с держателем, конструкция хорошо видна на фотографиях. Закрепляем его в держателе и крепим к стойке.

highslide.js highslide.js

Закрепляем подвижную часть и контрим гайкой.

highslide.js

Ну и всё, остаётся всю эту конструкцию закрепить на основании, закрепить имеющийся в распоряжении двигатель хомутом на подвижной части, закрепить сверло и начинать работать.Да, у жены "конфисковал" отслужившую свой срок пробковую подставку под горячую посуду, и вырезал из неё на основание насадку для печатных плат и приклеил её на основание, это чтобы при сверлении печаток сверло не доставало до основания.

highslide.js

Удачи всем в Вашем творчестве и всего наилучшего!

 

P.S.   Да, ещё хочу немного сказать про свёрла.Не поленитесь и найдите себе для работы специальные свёрла для сверления стеклотекстолита. Наши свёрла из сплава ВК6М, у них обычно хвостовик одного диаметра и сами свёрла 0,7-2,0. Отверстия сделанные ими гораздо приличнее, чем сделанные обычными свёрлами и выглядят они так;

 

highslide.js highslide.js

Импортные тоже примерно так выглядят.Это не рекламы ради, а для удобства и удовольствия работы.Я сверлил платы сначала обычными свёрлами (по металлу), которые после нескольких дырок сильно тупятся, а после десятка - приходят в полную негодность, потом узнал про такие свёрла, нашёл их и приобрёл (цена их, кстати лежит в пределах 20-50 рэ). Попробовал сверлить ими - небо и земля. По отзывам радиолюбителей - одним сверлом можно сверлить платы несколько лет (несколько тысяч отверстий), пока не сломаешь из-за небрежного обращения.

Но, эти свёрла не подходят для ручных сверлилок. При попытке сделать ими отверстие - оно мигом ломается (из-за малейшего перекоса). То есть ими можно долго и надёжно сверлить только в станке, и зажимной патрон не должен иметь никаких биений, а сверло зажатое им должно быть хорошо отцентрировано. Тогда и долговечность их гарантирована.

 

vprl.ru

Сверлильный станок для печатных плат.

позиционирование сверлаДелаем сверлильный станок для печатных плат своими руками.

Надоело , в общем то, сверлить платы ручной сверлилкой поэтому решено было изготовить небольшой сверлильный станок исключительно для печатных плат. Конструкций в интернете полным полно, на любой вкус.Посмотрев  несколько описаний подобных сверлилок, пришел к решению  повторить сверлильный станок на основе элементов от ненужного, старого CD ROM’a. Разумеется, для изготовления этого сверлильного станочка придется использовать материалы  те, что находятся под рукой.

От старого CD ROM’a для изготовления сверлильного станочка берем только стальную рамку со смонтированными на ней двумя направляющими и каретку, которая передвигается по направляющим. На фото ниже все это хорошо  видно.

Рамка и каретка из CD-ROM.На подвижной каретке будет укреплен электродвигатель сверлилки. Для крепления электродвигателя к каретке был изготовлен Г-образный кронштейн из полоски стали толщиной  2 мм.

В кронштейне сверлим отверствия для  вала двигателя и винтов его крепления.

В первом варианте для сверлильного станочка был выбран электродвигатель типа ДП25-1,6-3-27 с напряжением питания 27 В и мощностью 1,6 Вт. Вот он на фото:

электродвигатель ДП25-1,6-3-27

Как показала практика, этот двигатель слабоват для выполнения сверлильных работ. Мощности его ( 1,6 Вт)  недостаточно-  при малейшей нагрузке двигатель просто останавливается.

Вот так выглядел первый вариант сверлилки с двигателем ДП25-1,6-3-27 на стадии изготовления:

Поэтому пришлось искать другой электродвигатель-помощнее. А изготовление сверлилки застопорилось…

 

Продолжение процесса изготовления сверлильного станочка.

Через некоторое время попал в руки электродвигатель от разобранного  неисправного струйного принтера Canon:

электродвигатель от принтера Canon

На двигателе нет маркировки, поэтому его мощность неизвестна. На вал двигателя насажена стальная шестерня. Вал этого двигателя имеет диаметр 2,3 мм.  После снятия шестерни, на вал двигателя был надет цанговый патрончик и сделано несколько пробных сверлений сверлом диаметром 1 мм. Результат был обнадеживающим- «принтерный» двигатель  был явно мощнее двигателя ДП25-1,6-3-27 и свободно сверлил текстолит толщиной 3мм при напряжении питания 12 В.

Поэтому изготовление сверлильного станочка было продолжено…

Крепим электродвигатель с помощью Г-образного кронштейна к подвижной каретке:

электродвигатель Canon на кареткеэлектродвигатель Canon на каретке

Основание сверлильного станочка изготовлено из стеклотекстолита толщиной 10мм.

На фото – заготовки для основания станочка:

заготовка для основания стеклотекстолит

Для того, чтобы сверлильный станочек не ёрзал по столу во время сверления, на нижней стороне установлены резиновые ножки:

ножки резиновые

Конструкция сверлильного станочка –консольного типа, то есть несущая рамка с двигателем закреплена на двух консольных кронштейнах, на некотором расстоянии от основания. Это сделано для того, чтобы обеспечить сверление достаточно больших печатных плат. Конструкция ясна из эскиза:

Станок сверлильный для печатных плат_эскиз

Далее несколько изображений собранного сверлильного станочка.

сверлильный станоксверлильный станоксверлильный станок

Рабочая зона станочка, виден белый светодиод подсветки:

позиционирование сверла

Вот так реализована подсветка рабочей зоны. На фото наблюдается избыточная яркость освещения. На самом деле-это ложное впечатление (это  бликует камера)- в реальности все выглядит очень хорошо:

подсветка рабочей зоны

Консольная конструкция позволяет сверлить платы шириной не менее 130 мм и  неограниченной  ( в  разумных пределах) длиной.

Замер размеров рабочей зоны:

размер рабочей зоны

На фото видно, что расстояние от упора в основание  сверлильного станочка  до оси сверла составляет 68мм, что и обеспечивает ширину обрабатываемых печатных плат  не менее 130мм.

Для подачи сверла вниз при сверлении имеется нажимной рычаг-виден на фото:

нажимной рычаг

Для удержания  сверла над печатной платой перед процессом сверления, и возврата его  в исходное положение после сверления, служит возвратная пружина, которая надета на одну из направляющих:

возвратная пружина

 

Система автоматической регулировки оборотов двигателя в зависимости от нагрузки.

Для удобства пользования сверлильным станочком было собрано и испытано два варианта регуляторов частоты вращения двигателя. В первоначальном варианте сверлилки с электродвигателем  ДП25-1,6-3-27  регулятор был собран по схеме из журнала Радио №7 за 2010 год:

Регулятор оборотов

Этот регулятор работать как положено не захотел, поэтому был безжалостно выброшен в мусор.

Для второго варианта сверлильного станка, на основе электродвигателя от струйного принтера Canon, на сайте котов-радиолюбителей была найдена еще одна схема регулятора частоты вращения вала электродвигателя:Регулятор оборотов электродвигателя

Данный регулятор обеспечивает работу электродвигателя в двух режимах:

  1. При отсутствии нагрузки или, другими словами, когда сверло не касается печатной платы, вал электродвигателя вращается с пониженными оборотами (100-200 об/мин).
  2. При увеличении нагрузки на двигатель регулятор увеличивает обороты до максимальных, тем самым обеспечивая нормальный процесс сверления.

Регулятор частоты вращения электродвигателя собранный по  этой схеме заработал сразу без настройки. В моем случае частота вращения на холостом ходу составила около 200 об/мин. В момент касания сверла печатной платы-обороты увеличиваются до максимальных. После завершения сверления, этот регулятор снижает обороты двигателя  до минимальных.

Регулятор оборотов электродвигателя  был собран на небольшой печатной платке:

плата управления оборотами электродвигателя

Транзистор КТ815В снабжен небольшим радиатором.

Плата регулятора установлена в задней части сверлильного станочка:

плата системы автоматического регулятора оборотов

Здесь резистор R3  номиналом 3,9 Ом был заменен на МЛТ-2  номиналом 5,6 Ом.

Испытания сверлильного станка прошли успешно. Система автоматической регулировки частоты вращения вала электродвигателя работает четко и безотказно.

Небольшой видеоролик о работе  сверлильного станка:

 

Update от 01.08.2017:

На  плате управления кроме собственно регулятора оборотов двигателя расположен еще и простейший стабилизатор напряжения питания светодиода подсветки рабочей зоны. Полная схема платы управления:

www.myhomehobby.net

Сверлильный станок для печатных плат своими руками

Содержание   

С изобретением станков человечество серьезно продвинулось в сфере производства различного рода деталей и механизмов. Станки стали настоящим подспорьем для любого, кто намеревается обрабатывать металлы, дерево и любые другие материалы.

Ведь эти устройства изначально предназначаются для выполнения довольно специфических работ, которые по-другому вам качественно выполнить не удастся.

Самодельный станок для печатных плат из направляющей рейки

Самодельный станок для печатных плат из направляющей рейки

К такому оборудованию относится и сверлильный станок для печатных плат, что используется в электромеханике и смежных производственных сферах.

Читайте также: что собой представляет настольный станок для литья пластмасс и как он работает?

Общая информация

Любой станок – это специальный прибор, который собирают из нескольких составляющих. Задача этого прибора заключается в придании человеку возможности обработать тот или иной инструмент с большой точностью. То есть практически исключить из процесса конкретно ручной труд.

Это совершенно необходимо в работе, где нужна точность. Если при этом используется деталь из металла или любого точного материала, то без использования станка вам будет просто не обойтись.

Читайте также: о назначении и видах цанг.

Станок состоит из станины, переходников, установки под движок и еще нескольких механизмов. Все они собираются в единую конструкцию, что жестко зафиксирована в одном или нескольких положениях.

Стандартные и самые дешевые станки или мини-станки, если мы говорим об оборудовании, что предназначается для обработки миниатюрных деталей, могут перемещаться только по одной оси. То есть перемещение рабочего сверла выполняется сверху вниз. Это базовая функция станка, без которой его и станком назвать-то нельзя.

Пневматическое горное сверло для станка

Пневматическое горное сверло для станка

Более продвинутые модели можно точно настраивать на определенную координату, которая выставлена на столе. Это уже могут быть даже полуавтоматические или автоматические модели.

Как вы сами понимаете, именно четкая фиксация на прочной раме и возможность практически исключить человеческий фактор непосредственно в выполнении работ по сверлению – это основной плюс станков.

Читайте также: «Принцип работы станка для производства шлакоблоков своими руками».

к меню ↑

Особенности станков для печатных плат

Станки для печатных плат – это одна из разновидностей подобного оборудования. Вот только такие агрегаты, как правило, являются мини-образцами. И это вполне очевидно, ведь работать на них необходимо с печатными платами.

Для тех, кто не знаком с электротехникой проясним, что печатные платы – это по сути основания для любой микросхемы или электронной мини-цепочки. Практически каждый прибор в своей конструкции имеет хотя бы одну печатную плату. В особенности это касается приборов, что работают на электричестве.

Для образования единых стандартов в электротехнике и создания устойчивого основания были введены печатные платы. Производят их из диэлектрика, на который прикручивают или припаивают различного рода детали и соединения.

Плата может содержать на себе как мелкий транзистор и вывод к нему от элемента питания, так и огромное количество деталей, столь миниатюрных, что неподготовленный человек их даже не рассмотрит (речь идет о компьютерном оборудовании).

Конечно, в данной ситуации стоит отметить огромное количество печатных плат, что различаются по своей конструкции, используемому материалу и т.д. Но отметим, что все они являются разновидностью одного элемента, что выполняет функции основания для микросхем.

Простейшие платы оборудуют дополнительными элементами за счет их прикручивания и последующей пайки. Как вы сами понимаете, для прикручивания деталей необходимо проделать в плате отверстия.

Читайте также: о станках ТВ и их назначении.

Причем проделывать надо их с филигранной точностью. Расхождение даже в полмиллиметра может быть если не фатальным, то очень ощутимым. Особенно если вы собираетесь заполнить плату полностью.

Установка сверла на станок

Установка сверла на станок

Чего только стоит тот факт, что сверла для мини-станка по печатным платам в своем диаметре могут начинаться от образцов в 0,2-0,4 мм. И это если говорить о дешевых станках. Более продвинутое оборудование для создания сложных микросхем будет использовать еще более миниатюрные инструменты.

Как вы сами понимаете, обрабатывать подобные детали вручную – дело не из легких. Даже если вам и получится сделать парочку отверстий в нужном месте и нужной толщины, то займет этот процесс слишком много времени, а результат может быть испорчен единственной ошибкой.

Использовав же станок для печатных плат, работа существенно упрощается и становится практически механической. Равно как и повышается ее производительность. Да и конструкция такого оборудования сложностью не отличается, поэтому создать его можно своими руками.к меню ↑

Конструкция станка

Конструкция мини-станка для обработки печатных плат имеет довольно простую схему. По сути, этот станок мало чем отличается от стандартных сверлильных моделей, только он намного меньше и имеет несколько нюансов. Практически всегда мы рассматриваем настольный сверлильный мини-агрегат, так как он будет иметь размеры, что редко превышают отметку в 30 см.

data-ad-client="ca-pub-8514915293567855"data-ad-slot="5929285318">

Если рассматривать самодельный образец, то он может быть чуть больше, но только за счет того, что человек, который собирал его своими руками, просто не смог оптимизировать конструкцию должным образом. Такое бывает, если под руками попросту не находится подходящих деталей.

В любом случае станок, даже если он собран своими руками, будет иметь небольшие габариты и весить до 5 килограмм.

Опишем сейчас непосредственно конструкцию станка, а также детали, из которых его надо изготовить. В качестве основных составляющих при сборке мини-устройства для сверления плат используют:

  • станину;
  • переходную стабилизирующую рамку;
  • планку для перемещения;
  • амортизатор;
  • ручку для манипуляций с высотой;
  • крепление для движка;
  • движок;
  • блок питания;
  • цангу и переходники.
Так выглядит готовый самодельный сверлильный станок для печатных плат

Так выглядит готовый самодельный сверлильный станок для печатных плат

Итак, список используемого оборудования достаточно объемный, но на самом деле ничего сложного здесь нет.к меню ↑

Разбор конкретных деталей

Обратимся теперь к конкретным деталям, что уже были названы выше, а также дадим рекомендации по их подбору.

Для начала отметим, что мы сейчас описываем самодельный станок, который по сути можно собрать из подручных средств. Конструкция заводских образцов отличается от описанной нами только применением специализированных материалов и деталей, которые в домашних условиях создать практически невозможно. Придется покупать.

Начинается самодельный мини-станок, равно как и любой другой станок, со станины. Станина выполняет функции основания, на ней держится вся конструкция, на нее же монтируют поддерживающую деталь, на которой крепится обрабатываемая плата.

Станину желательно делать из тяжелой металлической рамки. Вес ее должен быть больше, чем вес всей остальной конструкции. Причем расхождение может быть довольно внушительным. Только так вы добьетесь стабильности агрегата во время работы. Особенно это касается моделей, что собираются своими руками.

И не стоит обманываться, когда видите приставку мини. Мини-станок – это такой же станок, и он все так же требует качественной стабилизации. Под станину часто прикручивают ножки или что-то подобное, чтобы дополнительно зафиксировать ее положение.

Самодельный сверлильный станок со стабилизационной рамкой

Самодельный сверлильный станок со стабилизационной рамкой

Стабилизирующая рамка является креплением для всего механизма. Ее делают из рейки, уголка или чего-то подобного. Предпочтительно использовать деталь. Планка для перемещения может быть самой разнообразной конструкции и часто совмещается с амортизатором. Иногда, амортизатор и сам является планкой для перемещения.

Эти две детали выполняют функции вертикального смещения станка во время работы. Благодаря им, станок можно быстро и без лишних усилий эксплуатировать.

Вариантов решений для выполнения таких деталей есть очень много. Начиная от самодельных или снятых с офисной мебели раздвижных реек на пружине, до профессиональных амортизаторов масляного типа.

Ручка для манипуляций крепится непосредственно к корпусу станка, амортизатору или стабилизирующей рейке. С ее помощью можно осуществлять давление на конструкцию, опуская и поднимая ее по своему желанию.

К стабилизирующей рамке уже прикрепляют планку для двигателя. Это может быть даже обычный деревянный брусок. Его задача – вывод движка на нужное расстояние и его надежная фиксация.

Движок монтируют на крепление. В качестве движка тоже можно пользоваться огромным количеством деталей. Начиная от дрели, и заканчивая движками, что сняты с принтеров, дисководов и другой офисной техники.

Сверла для сверления отверстий в печатных платах

Сверла для сверления отверстий в печатных платах

К движку цепляют цанги и переходники, которые будут основание для крепления сверла. Тут уже можно дать только общие рекомендации, так как переходники всегда подбираются индивидуально. Влияние на их выбор окажет вал двигателя, его мощность, тип используемого сверла и т.д.

Блок питания для мини-станка подбирается такой, чтобы он мог обеспечивать движок нужным напряжением в достаточных количествах.

Читайте также: «Где купить настольный сверлильный станок в Москве?».

к меню ↑

Технология сборки станка

Теперь обратимся к общему алгоритму, по которому ведется сборка агрегата для сверления печатных плат своими руками.

Этапы работы:

  1. Монтируем станину, крепим к ней ножки.
  2. Устанавливаем рамку держателя основной конструкции на станину.
  3. Крепим к рамке механизм перемещения и амортизатор.
  4. Монтируем крепление для движка, как правило, оно фиксируется на рамку перемещения.
  5. Устанавливаем ручку на крепление для двигателя.
  6. Устанавливаем движок и регулируем его положение.
  7. Прикручиваем к нему цангу и переходники.
  8. Монтируем блок питания, подключаем его к движку и сети.
  9. Подбираем и фиксируем сверло.
  10. Тестируем работу механизма.

Все соединения и их тип можете подбирать по своему усмотрению. Однако рекомендуется использовать болты и гайки, чтобы иметь возможность в нужный момент разобрать конструкцию, заменить ее составляющие или улучшить всю схему действия станка.к меню ↑

Самодельный станок для сверления печатных плат (видео)

data-full-width-responsive="true"data-ad-client="ca-pub-8514915293567855"data-ad-slot="8040443333">

 Главная страница » Сверлильные

ostanke.ru

Мини сверлильный станок для печатных плат - Инструмент - Exersizze.ru

 Давно планировал собрать какую-нибудь приспособу для нормального сверления печаток. Надоело бороться с результатом своих кривых рук после сверления двухсторонних плат: перекос, взлохмаченная медь, оторванные пятаки, или того хуже, сломанные сверла. Все это результат ручного сверления. Еще одним большим минусом является то, что простые сверла по металлу  долго не живут при сверлении текстолита. Одни расстройства в общем. Это все можно решить использованием твердосплавных свёрл и самое главное, использованием сверлильного станка.

 

 Общий вид того что должно получится на картинке ниже. Основание планируется сделать из ЛДСП, должна получится достаточно жесткая и главное недорогая конструкция.

 

 

 Основные детали печатаются на 3D-принтере, всего 9 напечатанных деталей. В качестве направляющих взял два отрезка полированных валов диаметром 12 мм. и длиной по 130 мм. К ним прикупил два удлиненных линейных подшипника LM12LUU. Также понадобится шпилька М6 длиной 145 мм. Она будет соединять ручку с подающей шестерней (зеленая на фото). Ну и кое-какой стандартный крепеж.

 

 Шестерня фиксируется на шпильке гайками с обоих сторон, для этого в ней есть углубления под гайки. А чтобы они не проворачивались, дополнительно поджимаются с обоих сторон самоконтрящимися гайками с тефлоновой вставкой:

 

 

 Крутиться шпилька будет в опорных блоках, в которые вставляются подшипники типоразмера 606

 Такие подшипники можно найти в магазинах торгующих запчастями для ручного электроинструмента, идут в качестве ремкомплекта к разным дрелям и шуруповертам.

 

  В верхний опорный блок который будет держать направляющие вставляются два ролика. Осью для них служит стальная проволока диаметром 1,5 мм и длиной 10 мм. Можно взять, к примеру, тонкие гвоздики и нарубить стержни из них, что я и сделал

 

 Через эти ролики будет проходить тросик, который будет оттягивать каретку вверх. Второй конец тросика крепится к пружине. По прикидкам, общая масса каретки+шпиндель+2xLM12LUU составит порядка 750 грамм, поэтому пружины надо подбирать такие, чтобы они смогли потянуть такой вес.  Внешний диаметр пружин не более 12 мм, иначе будут тереться о стенки.

 Я нашел подходящие пружины в магазине автозапчастей, такие стоя́т на впускном воздушном коллекторе карбюратора вазовской классики. После небольших манипуляций пассатижами сделал их покороче

  

 

 

 

Чтобы стала понятна общая конструкторская задумка, смотрим на картинку ниже. Вид на механику станка без задних стенок

 

 

 

 Для сверления я выбрал такой вот двигатель, в поисковике и на всяких алиэкспрессах находится как motor R775 напряжение питания 12 вольт, обороты 13000-15000 в минуту, диаметр вала 5 мм.

 

 И взял для него вот такую классную цангу ER11 под диаметр хвостовика сверла 3,175 мм (1/8 дюйма)

 

 Отверстие в держателе цанги выполнено на две сотки меньше, чем диаметр вала двигателя, поэтому сажать его нужно предварительно нагрев газовой горелкой или мощным паяльником. Или можно просто поработать надфилем, сделав отверстие посвободнее. Но тогда есть вероятность, что нарушится соосность.

 Двигатель оказался очень мощным и при включении уводил мой блок питания в защиту. Поэтому для плавного пуска двигателя собрал схемку на таймере 555:

 Конденсатор С1 времязадающий, чем выше его емкость тем плавнее разгоняется двигатель. В итоге я остановился на емкости 330 мкФ, время выхода на полные обороты составляет примерно 5 секунд.

 

 

 Общий вид станочка. Как видно, я не стал устанавливать две задних стенки, планируемые как ребра жесткости, и без них получилось очень крепко. Обе передние стенки стянуты между собой саморезами, а снизу притянуты к основанию конфирматами.

  

 

 Сверлить текстолит планируется вот такими твердосплавными сверлами. Самый маленький диаметр в наборе всего 0,3 мм!

 

Пробное сверление текстолита толщиной 1,5мм

 

 С обратной стороны отверстия получились чистые. Твердосплавные сверла на хороших оборотах не лохматят стеклотекстолит, как это делают обычные сверла.

 

 

 

Ссылки на используемые детали:

Двигатель R775

Цанга 1/8"

Цангодержатель ER11

Подшипники 606

Линейные подшипники LM12LUU

Набор твердосплавных сверл для печатных плат

 

 Детали для станка проектировались в SolidWorks, в архиве находятся все необходимые детали для изготовления.

Детали проекта в SolidWorks

Файлы в  формате .STL для печати

Установочные размеры

 

exersizze.ru

Мини сверлильный станок для печатных плат своими руками чертежи

Главная » Станок » Мини сверлильный станок для печатных плат своими руками чертежи

Сверлильный станок для печатных плат своими руками: чертежи, фото, видео | Помощник самодельщика

Сверлильный станок для печатных плат относится к категории мини-оборудования специального назначения. При желании такой станок можно сделать своими руками, используя для этого доступные комплектующие. Любой специалист подтвердит, что без использования подобного аппарата трудно обойтись при производстве электротехнических изделий, элементы схем которых монтируются на специальных печатных платах.

Общая информация о сверлильных станках

Любой сверлильный станок необходим для того, чтобы обеспечить возможность эффективной и точной обработки деталей, изготовленных из различных материалов. Там, где необходима высокая точность обработки (а это относится и к процессу сверления отверстий), из технологического процесса необходимо максимально исключить ручной труд. Подобные задачи и решает любой сверлильный станок, в том числе и самодельный. Практически не обойтись без станочного оборудования при обработке твердых материалов, для сверления отверстий в которых усилий самого оператора может не хватить.

Любой станок для сверления – это конструкция, собранная из множества составных частей, которые надежно и точно фиксируются друг относительно друга на несущем элементе. Часть из этих узлов закреплена на несущей конструкции жестко, а некоторые могут перемещаться и фиксироваться в одном или нескольких пространственных положениях.

Базовыми функциями любого сверлильного станка, за счет которых и обеспечивается процесс обработки, является вращение и перемещение в вертикальном направлении режущего инструмента – сверла. На многих современных моделях таких станков рабочая головка с режущим инструментом может перемещаться и в горизонтальной плоскости, что позволяет использовать это оборудование для сверления нескольких отверстий без передвижения детали. Кроме того, в современные станки для сверления активно внедряют системы автоматизации, что значительно увеличивает их производительность и повышает точность обработки.

Ниже для примера представлены несколько вариантов конструкции самодельных сверлильных станков для плат. Любая из данных схем может послужить образцом для вашего станка.

Особенности оборудования для сверления отверстий в печатных платах

Станок для сверления печатных плат – это одна из разновидностей сверлильного оборудования, которое, учитывая очень небольшие размеры обрабатываемых на нем деталей, относится к категории мини-устройств.

Любой радиолюбитель знает, что печатная плата – это основание, на котором монтируются составные элементы электронной или электрической схемы. Изготавливают такие платы из листовых диэлектрических материалов, а их размеры напрямую зависят от того, какое количество элементов схемы на них необходимо разместить. Любая печатная плата вне зависимости от ее размеров решает одновременно две задачи: точное и надежное позиционирование элементов схемы относительно друг друга и обеспечение прохождения между такими элементами электрических сигналов.

В зависимости от назначения и характеристик устройства, для которого создается печатная плата, на ней может размещаться как небольшое, так и огромное количество элементов схемы. Для фиксации каждого из них в плате необходимо просверлить отверстия. К точности расположения таких отверстий относительно друг друга предъявляются очень высокие требования, так как именно от этого фактора зависит, правильно ли будут расположены элементы схемы и сможет ли она вообще работать после сборки.

Сложность обработки печатных плат состоит еще и в том, что основная часть современных электронных компонентов имеет миниатюрные размеры, поэтому и отверстия для их размещения должны иметь небольшой диаметр. Для формирования таких отверстий используется миниатюрный инструмент (в некоторых случаях даже микро). Понятно, что работать с таким инструментом, используя обычную дрель, не представляется возможным.

Все вышеперечисленные факторы привели к созданию специальных станков для формирования отверстий в печатных платах. Эти устройства отличаются несложной конструкцией, но позволяют значительно повысить производительность такого процесса, а также добиться высокой точности обработки. Используя сверлильный мини-станок, который несложно изготовить и своими руками, можно оперативно и максимально точно сверлить отверстия в печатных платах, предназначенных для комплектации различных электронных и электротехнических изделий.

Как устроен станок для сверления отверстий в печатных платах

От классического сверлильного оборудования станок для формирования отверстий в печатных платах отличается миниатюрными размерами и некоторыми особенностями своей конструкции. Габариты таких станков (в том числе и самодельных, если для их изготовления правильно подобраны комплектующие и их конструкция оптимизирована) редко превышают 30 см. Естественно, и вес их незначительный – до 5 кг.

Если вы собираетесь изготовить сверлильный мини-станок своими руками, вам необходимо подобрать такие комплектующие, как:

  • несущая станина;
  • стабилизирующая рамка;
  • планка, которая будет обеспечивать перемещение рабочей головки;
  • амортизирующее устройство;
  • ручка для управления перемещением рабочей головки;
  • устройство для крепления электродвигателя;
  • сам электрический двигатель;
  • блок питания;
  • цанга и переходные устройства.

Разберемся в том, для чего предназначены все эти узлы и как из них собрать самодельный мини-станок.

Конструктивные элементы сверлильного мини-станка

Сверлильные мини-станки, собранные своими руками, могут серьезно отличаться друг от друга: все зависит от того, какие комплектующие и материалы были использованы для их изготовления. Однако как заводские, так и самодельные модели такого оборудования работают по одному принципу и предназначены для выполнения схожих функций.

Несущим элементом конструкции сверлильного станка для печатных плат является станина-основание, которая также обеспечивает устойчивость оборудования в процессе выполнения сверления. Исходя из назначения данного конструктивного элемента, изготавливать станину желательно из металлической рамки, вес которой должен значительно превышать суммарную массу всех остальных узлов оборудования. Если пренебречь этим требованием, вы не сможете обеспечить устойчивость вашего самодельного станка, а значит, не добьетесь требуемой точности сверления.

Роль элемента, на котором крепится сверлильная головка, выполняет переходная стабилизирующая рамка. Ее лучше всего изготовить из металлической рейки или уголков.

Планка и амортизирующее устройство предназначены для обеспечения вертикального перемещения сверлильной головки и ее подпружинивания. В качестве такой планки (ее лучше зафиксировать с амортизатором) можно использовать любую конструкцию (важно только, чтобы она выполняла возложенные на нее функции). В этом случае может пригодиться мощный гидравлический амортизатор. Если же такого амортизатора у вас нет, планку можно изготовить своими руками либо использовать пружинные конструкции, снятые со старой офисной мебели.

Управление вертикальным перемещением сверлильной головки осуществляется при помощи специальной ручки, один конец которой соединяют с корпусом сверлильного мини-станка, его амортизатором или стабилизирующей рамкой.

Крепление для двигателя монтируют на стабилизирующей рамке. Конструкция такого устройства, в качестве которого может выступать деревянный брусок, хомут и др., будет зависеть от конфигурации и конструктивных особенностей остальных узлов сверлильного станка для печатных плат. Использование такого крепления обусловлено не только необходимостью его надежной фиксации, но также тем, что вы должны вывести вал электродвигателя на требуемое расстояние от планки перемещения.

Выбор электрического двигателя, которым можно оснастить сверлильный мини-станок, собираемый своими руками, не должен вызвать никаких проблем. В качестве такого приводного агрегата можно использовать электродвигатели от компактной дрели, кассетного магнитофона, дисковода компьютера, принтера и других устройств, которыми вы уже не пользуетесь.

В зависимости от того, какой электрический двигатель вы нашли, подбираются зажимные механизмы для фиксации сверл. Наиболее удобными и универсальными из таких механизмов являются патроны от компактной дрели. Если подходящий патрон найти не удалось, можно использовать и цанговый механизм. Подбирайте параметры зажимного устройства так, чтобы в нем можно было фиксировать очень мелкие сверла (или даже сверла размера «микро»). Для соединения зажимного устройства с валом электродвигателя необходимо использовать переходники, размеры и конструкция которых будут определяться типом выбранного электродвигателя.

В зависимости от того, какой электродвигатель вы установили на свой сверлильный мини-станок, необходимо подобрать блок питания. Обращать внимание при таком выборе следует на то, чтобы характеристики блока питания полностью соответствовали параметрам напряжения и силы тока, на которые рассчитан электродвигатель.

Порядок сборки самодельного устройства

Как показывает практика, осуществлять сборку самодельного станка для сверления отверстий в печатных платах удобнее всего в определенной последовательности. Действовать надо в соответствии со следующим алгоритмом.

  • Выполняется монтаж станины, и к ее нижней стороне крепятся ножки, если они предусмотрены в конструкции.
  • К собранной станине крепятся планка перемещения и рамка держателя, на которой будет смонтирована сверлильная головка.
  • Рамку держателя соединяют с амортизатором, также фиксируемым на станине оборудования.
  • Устанавливается ручка управления перемещением сверлильной головки, соединяемая с амортизатором или рамкой держателя.
  • Монтируется электродвигатель, положение которого тщательно регулируется.
  • К валу приводного электродвигателя посредством переходников крепится цанга или универсальный патрон от дрели.
  • Выполняется монтаж блока питания, соединяемого с электродвигателем посредством электрических проводов.
  • В патрон устанавливается сверло и надежно фиксируется в нем.
  • Собранный самодельный станок тестируют, пробуя просверлить с его помощью отверстие в листовом диэлектрике.

Для того чтобы ваш самодельный сверлильный мини-станок можно было всегда разобрать и доработать, для соединения его конструктивных элементов лучше всего использовать болты и гайки.

При желании изготовить своими руками мини-оборудование для получения отверстий в печатных платах всегда можно воспользоваться чертежами и советами тех, кто уже является обладателем такого станка и активно работает на нем в своей домашней мастерской.

http://met-all.org/

pomogaka.ru

Самодельный сверлильный для печатных плат

Самодельный сверлильный для печатных плат На досуге за полдня соорудил вот такой станочек:
Прикрепленные изображения
Самодельный сверлильный для печатных плат

31 год сверлю платы на станке с подьемным столиком --очень удобно удачи вам

Самодельный сверлильный для печатных плат двигатель от принтера похоже?

Сообщение отредактировал leshka38: 14 July 2010 - 20:13

Самодельный сверлильный для печатных плат

А покрупнее можно, а то механизм подьема не видно.

Самодельный сверлильный для печатных плат мой сверлильный, подъемный столик, двигатель постоянный 48V, есть регулировка оборотов
Прикрепленные изображения
Самодельный сверлильный для печатных плат вот мой станочек ,лет ему уже много прошу сильно не критиковать.
Прикрепленные изображения
Самодельный сверлильный для печатных плат Вот мой станочек. Движок 24Вт, 110В постоянка Вот мой станочек. Движок 24Вт, 110В постоянка
Прикрепленные изображения
Самодельный сверлильный для печатных плат Стол можно убрать? Как происходит подача вверх-вниз стола?

Сообщение отредактировал popstartpop: 19 September 2010 - 16:40

Самодельный сверлильный для печатных плат

popstartpop, сдается мне, что там вся консоль со сверлом ходит...

Самодельный сверлильный для печатных плат

Двигается движок, зделано как видно из микроскопа, только в место окуляра -мотор, а стол держатель вроде от нивелира удобно виставлять соосность сверла со столом(перпендикуляр)

Самодельный сверлильный для печатных плат Мой станочек для печатных плат. Благодаря ему уже довольно долго живет единственное ТС сверло. Самодельный сверлильный для печатных плат

viter50 (14 Сентябрь 2010 - 23:42) писал:

вот мой станочек ,лет ему уже много прошу сильно не критиковать.

Класс! Я когда-то тоже собирался такой же делать, да так и не сподобился, производственных мощностей не хватило. Самодельный сверлильный для печатных плат

подобних станков много  на  vri-cnc.ru

Самодельный сверлильный для печатных плат В наших квартирах не так-то и много места, чтоб держать станок для п\п. Уже лет 30 пользуюсь с успехом вот такой дрелькой с набором цанг под диаметры 1, 2 и 2,5 мм. В самую маленькую цангу запросто зажимается сверлышко 0,7...0,8.

Движек какой-то самолетный, но от 12 вольтей работает отлично.

Прикрепленные изображения
Самодельный сверлильный для печатных плат вот как вариант
Прикрепленные изображения
Самодельный сверлильный для печатных плат Пользуюсь для сверления печатных плат таким самодельным из микроскопа с (ШИМ) регулятором оборотов. Идея конечно не нова, но она мене понравилась из за простоты и компактности.Блок питания импульсный от ноутбука. От цангового патрона в последствии отказался из за сображения уменьшения биений сверла,

и сечас пользуюсь мультипатроном (Dremel 486) установленным через переходник.

Фото ещё старое с цанговым патроном.

Тех.докум.станка http://depositfiles....uov3fu?redirect

Прикрепленные изображения

Сообщение отредактировал Kepa: 07 May 2011 - 14:30

Самодельный сверлильный для печатных плат а вот мой станок для печатных плат сверлит при поднимании столика, сверлю даже и другие вещи так как есть возможность перемещать патрон.
Прикрепленные изображения
Самодельный сверлильный для печатных плат

Есть кто с чпу сверлилкой работает?

Самодельный сверлильный для печатных плат

NikolayMS (сегодня, 14:28) писал:

Есть кто с чпу сверлилкой работает? Свят свят... вообще то в производстве делается наоборот, прошив отверстий а потом металлизация. Самодельный сверлильный для печатных плат

Kepa (07 Май 2011 - 14:29) писал:

мультипатроном (Dremel 486) установленным через переходник.

Kepa, а переходник сами делали, или продаются готовые? Я хотел сделать, но доступные мне станки не режут 40 ниток на дюйм .

www.chipmaker.ru

Cверлильный станок своими руками

Что делать если дома нет сверлильного станочка для печатных плат? Покупать конечно же дорого, да и бывает что станок не нужен для частого использования. Предлагаю вам 2 простые идеи для самостоятельного изготовления сверлильного станочка своими руками. Первый вариант очень прост, для его изготовления нам понадобится электродвигатель от кассетных магнитофонов. Помните такие? Такие двигатели можно снять с любого магнитофона китайского или советского производства.

Выглядят они примерно так:

Итак, электродвигатель у нас есть, еще нам понадобится сверло необходимого диаметра, обычно это 0,7-1мм, нужно взять тонкую пасту от шариковой ручки, тонкую нитку сантиметров 10, ножницы и секундный клей.

Все приготовили? Начинаем собирать.

Берем исписанную пасту от шариковой ручки (можно и новую) и отрезаем 15 мм, далее нам нужно насадить ее на вал двигателя чуть меньше половины (на 6-7 мм). Затем снимает ее с помощью отвертки или пинцета и отложим в сторону (хотя можно и не снимать).

Берем сверло, наматываем на него нитку виток к витку в 2 слоя, ниже фото:

Придерживая конец нитки (чтобы не размотался) наносим каплю секундного клея и быстро запихиваем сверло в трубочку. Если будете медлить, клей застынет.

Вот что у нас получилось:

Если сверло будет криво вращаться, вы просто подогните в нужном направлении пасту, пока не отцентрируете сверло, и можете приступать к сверлению своей платы

Второй вариант сверлильного станка

Теперь расскажу вам про второй вариант сверлильного станка, таким, каким пользуюсь я. Сделать его будет немного сложнее. Подробных чертежей с размерами я давать не буду, т.к. станок собирался из того что есть, пусть статья будет ознакомительной, но фотографии, и схематически я станок все же опишу. Вы можете попробовать собрать себе похожий станок по моим рисункам Данный станок выглядит так:

Построен он на рычажном механизме, при нажатии которого опускается двигатель вместе со сверлом, а если отпустить рычаг, двигатель снова поднимется вверх.

Вот фото самого механизма:

Подъемно-спусковая часть изготавливается из листового металла, лист выпиливается нужной формы, загибается и высверливаются отверстия. Вместо загнутого прутка что на фотографии можно применить что-нибудь аналогичное, например заменить его двумя длинными винтами М4, с резьбой в конце.

Чертежи механизмов:

Чертеж подъемно-спускового механизма.

Чтобы вас не запутать, подъемно-спусковой и рычажные механизмы начертил отдельно

Вот что получится если совместить два верхних рисунка

Думаю суть понятна и теперь по моим наброскам при желании вы сможете собрать нечто подобное, идею я вам подбросил, так что дерзайте!

Еще хочу дать небольшой совет по поводу сверел, сверла очень быстро затупляются и начинают плохо сверлить, если нет заточного станка, то не выкидывать же их? Я нашел следующий выход из этой ситуации, берем сверло, и аккуратно откалываем пассатижами (плоскогубцами) конец сверла, (миллиметр или чуть больше), причем нужно откалывать не как попало, как правильно показано на рисунках ниже.

cxem.net

Сверление отверстий в печатных платах. — Сообщество «Сделай Сам» на DRIVE2

Всем привет.

Часть 1.Часть 2.Часть 3.

Сделаю небольшое дополнение по поводу своей приблуды для сверления отверстий в печатных платах. После того, как пришел зажимной патрон, с центровкой сверла в патроне, да и центровкой патрона на оси двигателя стало гораздо лучше! Хотя сверло тоже не с первого раза зажимается соосно в таком виде патрона.

Полный размер

Патрон для зажатия сверла.

Еще небольшим недостатком было недостаточное освещение во время сверления. Дело в том, что в схеме управления вращения мини-дрели стоит линейный стабилизатор для «холостого» режима (без нажима) я его настроил на 3В – и беру с его выхода питания для подсветки. Подсветку организовал четырьмя светодиодами 1206.

Полный размер

Освещение на минидрель.

Полный размер

Освещение на минидрель.

Видео работы:

Если кому нужна печатка для светодиодов – напишите в комментариях, я добавлю ссылку.

Схема управления мини-дрели в этом посте.Файл платы подсветки тут.

www.drive2.ru

i-perf.ru

СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ

   Первый вариант настольного станочка для сверления плат сделал ещё три года назад. Делал целенаправленно, именно для сверления плат (для другого не предназначен) и исключительно из подручных материалов, делал на «скорую руку» как временное приспособление, потратил на изготовление выходной день. А он взял и «прижился» - оказался необыкновенно удобным в работе.

вариант настольного станочка для сверления плат

   Диаметр возможных для использования свёрл от 0,5 до 1 мм включительно. Старт спринтерский, финиш без инерции. Подвёл плату, нажал - отверстие готово, отпустил - в исходное положение сверло вернулось само. На всё 2-3 секунды. Через полгода, раз вещь пришлась «ко двору», потратил ещё вечер и придал ей более подобающий и приемлемый вид.

Изготовление настольного станочка для сверления плат

   Устройство и принцип работы, как видите, остались прежними. Прошло ещё два года, но так и не собрался сделать что-нибудь более солидное, хотя комплектующие для этого подобрались. От добра, добра не ищут. А вот модернизацию себе позволил.

Усовершенствование настольного станка для сверления плат

   Появились существенные изменения:

  • опускание происходит при помощи нажатия рукоятки
  • включение электродвигателя происходит при опускании в момент нажатия кнопки о упор
  • стол для сверления на резьбе и может подниматься – опускаться для регулировки расстояния от поверхности просверливаемой платы до «точки» включения электродвигателя
  • электродвигатель запитан постоянным током

Станочек для сверления плат - схема подключения

Станочек для сверления плат - схема подключения

   Основа всего станина и направляющие.

Основа стана станина и направляющие

   Втулки, их внутренний диаметр лишь на одну – две десятых миллиметра больше диаметра направляющих, материал – эбонит (диэлектрик), выбран не случайно, это своеобразная «развязка» от электрического тока. Из чего сделан поясок, в дальнейшем фиксирующий тягу, догадаться не сложно.

втулки, станина и направляющие

   Кнопка – включатель закреплена на пластиковом уголке 2 винтами с гайками, сам уголок соединён с втулками клеем.

Кнопка – включатель электромоторчика

   В валу электродвигателя имеется отверстие с резьбой М2, приладить цангу труда не составило. И фетровые сальники (с обеих сторон вала) дождались масла.

СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ - мотор эл.

   В качестве «несущего» элемента, к которому крепиться двигатель и который в свою очередь крепиться к втулкам был выбран мебельный уголок (лёгкий, прочный и легко обрабатывается). Диодный мост и конденсатор в  защитном кожухе.

Диодный мост и конденсатор в защитном кожухе

   Упор состоит из пружинки, с одной стороны которой приклеен именно сам резиновый упор, с другой припаяна гайка, накручивающаяся на винт, который установлен на резьбе в отверстии станины.

СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ своими руками

   Сверлильный стол установлен на винт (его дополнительная функция описана выше).

Сверлильный стол установлен на винт

   Ну и, в конце концов, как это всё работает:

Видео процесса сверления

   Для тех, кому понравилось: всё то, из чего был собран этот станочек для сверления плат, ранее лежало по банкам, коробкам и просто углам. Думаю, что намёк более чем очевиден. Желаю Вашим, свёрлам никогда не тупиться, Babay.

   Форум по самодельному оборудованию

   Обсудить статью СТАНОК ДЛЯ СВЕРЛЕНИЯ ПЕЧАТНЫХ ПЛАТ

radioskot.ru

Сверлильный станок своими руками для печатных плат

Сверлильный станок своими руками

Сверлильный станок своими руками-01Сверлильный станок своими руками-01

Сверлильный станок своими руками — в данном обзоре речь пойдет об изготовлении миниатюрного сверлильного станочка в домашних условиях из подручных средств. Статья предназначена в основном для радиолюбителей, кому часто приходится самостоятельно изготавливать печатные платы. Но такое компактное оборудование как представленный ниже станок будет полезен не только в сфере электроники, но и в других хозяйственных делах.

Основой для конструкции послужили детали от вышедшего из строя CD ROM’a от компьютера. Вернее нужны будут только металлическая рамка с установленными на ее плоскости парой направляющих и кареткой, этот фрагмент показан на фото ниже. Цель конечно у меня была собрать сверлилку из подручных материалов. То есть из того, что было в хозяйстве и могло пригодиться в построении такого оборудования.

Сверлильный станок своими руками-1Сверлильный станок своими руками-1

На скользящей каретке в дальнейшем будет смонтирован двигатель, а затем уже будет собран сам сверлильный станок своими руками. Чтобы закрепить его, предварительно был изготовлен специальный держатель в виде кронштейна из отрезка листовой стали 2мм.

Сверлильный станок своими руками-2Сверлильный станок своими руками-2

Электродвигатель

В держателе просверлил отверстия под размер вала электродвигателя и соответственно под винты, которые будут держать кронштейн с двигателем. Изначально для сверлильного устройства был применен электромотор ДП25-1,6-3-27, работающий от постоянного напряжения 27v и развивающий мощность 1,6 Вт. Смотрите фото:

Сверлильный станок своими руками-3Сверлильный станок своими руками-3

В процессе испытания этого мотора, было установлено, что у него не хватает необходимой мощности для сверления в стеклотекстолите. 1.6W явно недостаточно для этого, чуть-чуть увеличиваешь нагрузку и двигатель становится.

На это фото показан сверлильный станок своими руками с электромотором  ДП25-1,6-3-27 , вариант которого сначала предполагался использовать :

Сверлильный станок своими руками-4Сверлильный станок своими руками-4

В связи с тем, что силовой агрегат мало производителен пришлось от него отказаться и искать мотор соответствующей мощности. Конечно на поиски нужного двигателя ушло некоторое время, поэтому процесс изготовления был немного приостановлен. Но как говорится «мир не без добрых людей» и товарищ подарил мне электромотор от старого нерабочего принтера.

Сверлильный станок своими руками-5Сверлильный станок своими руками-5

Новый электродвигатель

Вновь приобретенный двигатель не имел шильдика с маркировкой, следовательно, его мощность доподлинно я не знаю. Но мощности его вполне хватало, чтобы собрать сверлильный станок своими руками. На вал якоря запрессована металлическая шестеренка. Диаметр вала на двигателе — 2,3 мм. Далее я убрал шестеренку с вала, а вместо нее поставил цанговый зажим и попробовал просверлить несколько отверстий сверлом 1.2 мм. Результат конечно меня приятно удивил, данный моторчик прекрасно справлялся со сверлением 3 миллиметрового текстолита при питающем напряжении 12v.

Здесь показано как я крепил мотор с использованием держателя к скользящей каретке:

Сверлильный станок своими руками-6Сверлильный станок своими руками-6 Сверлильный станок своими руками-7Сверлильный станок своими руками-7

Опора сверлильного устройства выполнено из десяти миллиметрового отрезка стеклотекстолита.

Это подготовленные детали для основания устройства:

Сверлильный станок своими руками-8Сверлильный станок своими руками-8

Для обеспечения устойчивости, сверлильный станок собранный своими руками, в нижней части основания вмонтированы резиновые опорные ножки:

Сверлильный станок своими руками-9Сверлильный станок своими руками-9

Конструкция устройства

Металлическая конструкция устройства имеет образ консоли, другими словами — несущие шасси с установленным на нем электродвигателем при помощи двух специальных держателей. Рама с мотором установлена на небольшом расстоянии от нижней части станка. Такой вариант системы позволил выполнять сверление большого по размеру текстолита. Эскиз устройства приведен ниже:

Сверлильный станок своими руками-10Сверлильный станок своими руками-10

Ниже картинки уже готового сверлильного станка

Сверлильный станок своими руками-11Сверлильный станок своими руками-11 Сверлильный станок своими руками-12Сверлильный станок своими руками-12

Сверлильный станок своими руками-13Сверлильный станок своими руками-13

В рабочей части устройства на фото, виден установленный для подсветки светодиод:

Сверлильный станок своими руками-14Сверлильный станок своими руками-14

На показанном изображении видна слишком большая степень яркости подсветки. В действительности же все освещается очень корректно:

Сверлильный станок своими руками-15Сверлильный станок своими руками-15

Конструкция выполненная в виде консоли дает возможность делать отверстия в больших по ширине заготовках, более чем 140 мм, ну и естественно большой длинны.

Измерение полезной площади для сверления:

Сверлильный станок своими руками-16Сверлильный станок своими руками-16

Как показывает изображение, что длина плоскости от передней части подвижной каретки станка до центра сверла составляет 69 мм. То есть ширина текстолитовых заготовок для печатных плат может быть примерно 135 мм.

Подвижной механизм

Для опускания и подъема механизма сверления предусмотрен специальный рычаг нажимного действия:

Сверлильный станок своими руками-17Сверлильный станок своими руками-17

Для фиксации сверлильного узла над заготовкой перед началом сверления, а затем его возвращение назад, то есть реверс обеспечивает пружина возврата. Она помещена на направляющей оси:

Сверлильный станок своими руками-18Сверлильный станок своими руками-18

На этом изображении показана схема настройки оборотов электромотора в автоматическом режиме, которая зависит от степени нагрузки.

Для комфортного использования сверлильного устройства было изготовлено два образца регулировки скорости вращения электродвигателя. Один вариант станка для сверления был выполнен на базе электромотора ДП25-1,6-3-27, модуль регулировки и его принципиальная схема были позаимствованы в журнале Радио №7 за 2010 год:

Сверлильный станок своими руками-19Сверлильный станок своими руками-19

К сожалению вариант регулировки надлежащим образом работать не стал, поэтому был исключен из дальнейшего тестирования.

Другой образец сверлилки был сделан с использованием моторчика от принтера, на просторах интернета нашлась еще одна подходящая схема для регулировки оборотов двигателя. Вот ее я и с успехом применил.

Сверлильный станок своими руками-20Сверлильный станок своими руками-20

Два режима скорости

Представленная здесь схема регулятора способна поддерживать работу электромотора в двух скоростных режимах:

1. Во время холостой работы сверлильного станка якорь двигателя вращается с низкой скоростью, то есть в это время задействовано меньшее напряжение питания.2. Когда возникает нагрузка на двигатель, то есть момент начала сверления, автоматический регулятор подает на двигатель полное напряжение, тем самым увеличивается скорость вращения.

Модуль автоматической регулировки скорости вращения мотора выполненный по представленной выше схеме, начал сразу работать корректно. В процессе тестирования установил такие параметры: при работе устройства в режиме без нагрузки — 2200 об/мин. В момент начала сверления текстолита скорость поднимается до максимального значения. По окончанию сверления регулятор автоматически убирает скорость вращения до самых низких.

Схема данного регулятора была реализована на маленькой по размеру плате:

Сверлильный станок своими руками-21Сверлильный станок своими руками-21

Кремневый транзистор КТ815В установлен на радиаторе охлаждения.

Модуль регулятора размещен с тыльной стороны сверлильного устройства:

Сверлильный станок своими руками-22Сверлильный станок своими руками-22

На плате показан постоянный резистор R3 с сопротивлением 5,6 Ом и мощностью рассеивания 2 Вт.

Тестирование сверлильного станка показало прекрасную его работу. Автоматика выполняла свои функции безупречно.

Здесь представлен маленький видео-обзор сверлильного станка в работе:

Обновление от 01.08.2017:

В схеме управления, помимо своего регулятора скорости вращения, установлен элемент стабилизации питающего напряжения для светодиода подсветки. Окончательная принципиальная схема модуля управления:

Сверлильный станок своими руками-23Сверлильный станок своими руками-23

usilitelstabo.ru