Фундаментные балки используют для строительства опор отдельно стоящих зданий, как правило, коммерческого и промышленного назначения. В частном домостроении такие элементы конструкции используются редко, монтаж таких железобетонных изделий в большинстве случаев нецелесообразен.
Балки фундаментные применяют как несущие элементы, способные выдерживать значительные нагрузки. Кроме того, монтаж подобных сооружений защищает пористые материалы стен от соприкосновения с грунтом, предотвращая проникновение влаги.
Конструкции устанавливают под стены зданий (наружные и внутренние) из штучных материалов или из панелей (сплошные, а также – с дверными и оконными проемами). Их использование повышает скорость возведения зданий и увеличивает жесткость конструкций в целом. Основание с использованием железобетонных опор рассматриваемого типа упрощает работы, когда выполняется монтаж подземных инженерных коммуникаций.
Типы изделий, применяющиеся для установки в различных местах, конструктивно отличаются.
[ads-pc-3]
[ads-mob-4]
Габаритные размеры и геометрическая форма опор определяется Государственным стандартом, который определяет 6 видов изделий этой категории. Чтобы монтаж железобетонных изделий этого вида был легким и дал ожидаемые результаты, типоразмер выбирают с учетом конструкции здания.
Серия с трапециевидным сечением, верхнее основание которого – 20 см, а нижнее – 16 см. Существует 6 типоразмеров этой серии с длиной 1,45-6,0 метров. Высота всех изделий 30 см.
Изделия с Т-образным сечением. Ширина верхней площадки – 30 см., величина нижней грани – 16 см, высота — 30 см. Толщина верхней перекладины – 10 см. Серия включает 6 типоразмеров с длиной изделий 1,45-6,0 метров.
Увеличенная версия конструкций типа 2БФ с величиной верхнего основания 40 см. Толщина перекладины остается стандартной – 10 см, как и высота изделия – 30 см. Размер нижней грани также увеличен и составляет 20 см.
Серия крупногабаритных тавровых конструкций для фундаментов. Величина верхней грани – 52 см, нижней – 20 см. Толщина перекладины и высота балки стандартные и составляют 10 и 30 см соответственно. В диапазоне длин изделий от 1,45 до 6,0 метров – 11 типоразмеров.
Универсальные усредненные модели стандартной высоты (30 см) с верхней гранью 32 см, и увеличенной нижней гранью 24 см. Существует 5 типоразмеров железобетонных опорных конструкций этой серии с длиной 10,3-12,0 метров.
Особая серия фундаментных опор с увеличенной вдвое высотой (60 см). Соотношение верхней и нижней граней – 40х24 см. Используются 5 типоразмеров балок серии с длиной 10,3-12,0 метров.
[ads-pc-1]
[ads-mob-1]
Стандарт допускает отклонение от указанных линейных размеров до 1,2 см и изменения по длине – до 2 см.
Вне зависимости от геометрии сечения опоры, на ней имеются скосы, благодаря которым на этапе производства железобетонное изделие легче вынуть из формы.
Выбор длины моделей определяется:
[ads-mob-1]
В зависимости от качества металлического прута, использующегося для армирования железобетонных конструкций, выделяют два типа изделий, применяющихся при устройстве фундаментов.
Выбор типа бетона для заливки армированных бетонных конструкций определяется типом стен здания.
В современном строительстве балки применяют при строительстве зданий с колоннами.
[ads-pc-2]
[ads-mob-1]
Каждая фундаментная балка характеризуется следующими параметрами:
На этапе производства в тело изделий, предназначенных для строительства фундамента, встраивают металлические петли, через которые при монтаже можно пропустить трос. Погрузо-разгрузочные работы и монтаж таких железобетонных изделий выполняются при помощи грузоподъемных механизмов (лебедки или крана), поскольку даже изделие серии 1БФ малого размера (с длиной 1,45 м) весит 100 кг.
[ads-mob-1]
Конструкции используют для сборки ростверка и для строительства ленточных оснований из блоков. В первом случае монтаж железобетонных изделий выполняется с установкой их на сваи или столбы, во втором – непосредственно на подсыпку из песка и гравия («подушку»).
[ads-pc-1]
Шаг установки вертикальных опор выбирают в зависимости от размеров опорных конструкций. Для изделий серии 1БФ-4БФ расстояние между опорами устанавливают в пределах 1,4-6,0 метров. Изделия иных серий требуют установки опор, которые располагаются по периметру основания (шаг — 12 метров). Монтаж и сборка конструкций осуществляется с фиксацией балок хомутами или путем приваривания металлокаркасов балок и опорных столбов.
Использование сборных опорных конструкций из железобетона при возведении зданий имеет существенные преимущества.
Эксплуатационным преимуществом использования изделий следует считать простоту прокладки под ними туннелей и каналов для проведения коммуникаций.
Железобетонные фундаментные балки могут использоваться:
Для достижения оптимальных результатов, долговечности и прочности зданий важно правильно выбрать типоразмер изделий, материал для их изготовления, размер железобетонных изделий и выполнить монтаж без нарушений технологии.
rfund.ru
Сборные фундаментные конструкции являются широко распространённой технологией при строительстве промышленных объектов, складов и общественных зданий. Использование готовых бетонных деталей позволяют в разы сократить трудозатраты при устройстве несущих оснований. Фундаментные балки, они же рандбалки – одна из деталей сборного или комбинированного сборно-монолитного столбчатого фундамента.
Рандбалки выпускаются на заводах железобетонных изделий в соответствии с ГОСТ №28-737-90, который регламентирует технические условия их отливки, размеры и форму. Для их отливки применяется тяжёлый армированный железобетон марки прочности от М-250 до М-400 (В-20…В-30). По своим особенностям фундаментные балки классифицируются по нескольким показателям:
В строительной документации данные ж/б детали обозначаются как БФ – «балки фундаментные железобетонные». По размеру и форме они подразделяются на 6 классов, от БФ-1 до БФ-6.
Классификация рандбалок согласно ГОСТ № 28-737-90
МаркировкаСечениеВысота деталиДлина деталиБФ-1 | Трапецевидное. Ширина: низ – 16 см, верх – 20 см. | 30 см | 145 – 595 см |
БФ-2 | Тавровое. Низ – 16 см, верх – 30 см. | 30 см | 145 – 595 см |
БФ-3 | Тавровое. Низ – 20 см, верх – 40 см. | 30 см | 145 – 595 см |
БФ-4 | Тавровое. Низ – 20 см, верх – 52 см. | 30 см | 145 – 595 см |
БФ-5 | Трапецевидное. Низ – 24 см, верх – 32 см. | 30 см | 1030 – 1195 см |
БФ-6 | Трапеция. Низ – 24 см, верх – 40 см. | 60 см | 1030 – 1195 см |
В зависимости от типа армирования фундаментные балки делятся на 2 категории.
Рандбалки применяются при строительстве фундаментных оснований в качестве несущих деталей. Как правило, область их применения – фундаменты больших по объёму зданий. Использование готовых конструкционных деталей в данном случае позволяет сократить затраты сил и времени на монолитную заливку.
Кроме того, монтаж сборного фундамента балочного типа несёт немалые финансовые выгоды: ведь себестоимость ленточного или плитного фундамента для большого промышленного цеха, ангара или склада может превысить стоимость несущих стен и кровли.
Вместе с тем, балочные конструкции имеют ограничения по выдерживаемой нагрузке. Связано это с особенностью их установки: фундаментные балки опираются на несущие столбы только своими краями, в то время как их центральная часть находится на весу.
Согласно строительным нормативам, фундамент из рандбалок может использоваться в качестве опоры для
стен из облегчённых бетонных плит, заполненных пенополистиролом или керамзитом, высотой не более 25 м, либо из кирпича высотой до 15 м при толщине стены 25 см («в кирпич»).
При монолитной заливке стен или большей толщине кирпичной кладки нагрузка на балку значительно возрастает. В результате допустимая высота стен сокращается прямо пропорционально их массе.
Согласно ГОСТу, фундаментные балки предназначаются «для возведения стен промышленных зданий и построек сельскохозяйственного назначения». Но, несмотря на это, применение рандбалок вполне допустимо и в малоэтажном жилом строительстве.
При использовании в строительстве фундамента из бетонных балок необходимо правильно рассчитать массу здания и на основе этого составить проект. Вес постройки должен быть равномерно распределён на несущее основание: это поможет избежать неравномерной осадки фундамента, и, как следствие, его возможной деформации и разрушения.
Бетонные фундаментные балки имеют ряд особенностей, влияющих на их технические и эксплуатационные качества. Среди основных плюсов можно указать:
Благодаря этим качествам, фундаментные основания из ж/б балок рекомендуется использовать в следующих случаях:
Самый главный минус данной технологии– монтаж фундаментных балок невозможен без привлечения подъёмного крана.
Согласно СНиП, фундаментные балки применяются в качестве составной части сборных ж/б оснований столбчатого типа. В качестве несущих опор в этом случае используются так называемые «стаканы», изготавливаемые на заводах ЖБИ или заливаемые непосредственно по месту установки.
Внешне «стакан» представляет собой ступенчатую конструкцию квадратного сечения, подошва которого значительно шире верхней части. Перед тем, как приступить к монтажу или заливке «стаканов», следует составить проект будущего фундамента. При проектировании следует учитывать вес постройки и в зависимости от этого рассчитывать необходимое количество опор.
Если частный застройщик не имеет опыта в инженерных расчетах, наилучшим выходом будет обратиться к услугам специалистов. Ведь в случае неправильно составленного проекта фундамента появляется угроза разрушения всей постройки.
Установку столбчатых опор следует производить с учётом стандартной длины рандбалок: 145, 400, 550…1105 см. В зависимости от этих показателей и следует устанавливать опоры и производить закупку балок необходимой длины. Готовые столбчаты опоры-«стаканы» можно приобрести на заводе ж/б изделий. Также можно залить их своими руками по монолитной технологии.
В этом случае заливка осуществляется поэтапно: сначала устанавливается опалубка под первую ступень – основание. Затем производится армирование и заливка бетонного раствора, после застывания которого можно приступать к заливке последующих ступеней.
Главное при установке или заливке опор – выдерживать необходимую дистанцию между «стаканами», чтобы в дальнейшем не возникло проблем с монтажом рандбалок.
Установку ж/б фундаментных балок следует производить только после того, как залитые монолитные «стаканы» наберут полную прочность. На это обычно уходит от 3-х до 4-х недель, в зависимости от температуры и влажности воздуха.
Строповка ж/б элементов производится при помощи специальных монтажных петель или отверстий. Во избежание несчастного случая при выполнении строповки следует соблюдать правила проведения работ и требования техники безопасности.
Особенностью монтажа рандбалок является отсутствие жёсткой связи между ней и опорой-«стаканом». Балка удерживается на месте исключительно своим весом и массой лежащих на ней конструкций здания. В связи с этим очень важно соблюдать рекомендуемый размер опирания балки. Он должен составлять не менее 30 см при длине рандбалки свыше 6 м, и не менее 25 см при длине до 6 м.
Используя фундаментные балки в качестве опорных элементов, можно значительно оптимизировать всю работу по устройству основания дома. Важно лишь правильно произвести проектировку и монтаж конструкции, чтобы она смогла прослужить многие годы.
Статьи по теме:
kakfundament.ru
Поиск
fundamentaya.ru
1. Грунт под фундаментом можно рассматривать как упругое основание с постоянными физическими свойствами далеко не всегда. Более точный ответ на вопрос, как изменяются свойства грунта под фундаментом, может дать только геологоразведка. Но в любом случае, чем больше размеры строения в плане, тем больше вероятность, что свойства грунта под ленточным фундаментом будут не одинаковыми.
2. Со временем физические свойства грунта могут изменяться в результате жизнедеятельности человека или по природным причинам (например при изменении уровня грунтовых вод). Это может приводить к неравномерной осадке основания.
Для стен из натурального или искусственного камня наиболее неблагоприятной будет ситуация, когда наибольшая осадка произойдет под одним или несколькими углами здания. В этом случае в сечениях стены появятся дополнительные растягивающие напряжения, что может привести к образованию трещин. Впрочем и дополнительные сжимающие напряжения при просадке грунта ближе к середине ленты также могут оказаться не желательными.
3. Мелкозаглубленные ленточные фундаменты могут испытывать дополнительные нагрузки из-за пучения замерзшего грунта.
4. Принимаемая при расчетах нагрузка на фундамент далеко не всегда является равномерно распределенной по всей длине ленты фундамента. Наличие окон и дверей приводит как минимум к изменению значений нагрузки, а под достаточно широкими дверями нагрузки на ленту фундамента может вообще не быть. Кроме того, нагрузка на фундамент в летнее и зимнее время может быть разной.
5. В углах сопряжения перпендикулярных лент фундамента возможны скачки напряжений, если ширина лент фундамента определена неправильно или эти ленты делаются одной ширины из технологических соображений.
Как видим, причин для армирования ленточного фундамента вполне достаточно, даже если армирование по расчету не требуется. Такое армирование называется конструктивным, т.е. принимаемым без расчета. При этом конечно же должны соблюдаться общие требования по армированию балок, а также по анкеровке арматуры. Если же ленточный фундамент делается ступенчатым, то расчет армирования подошвы фундамента - отдельная тема.
Как правило в малоэтажном строительстве различные авторы многочисленных сайтов рекомендуют использовать для продольного армирования стержни диаметром 10-12 мм, но не более 40 мм.
На чем основана данная рекомендация, я не знаю. В известной мне технической литературе подобных рекомендаций нет. Впрочем эта литература предназначена для специалистов, а не для любителей. От себя могу добавить, что при выборе диаметра арматуры для конструктивного армирования кроме вышеизложенного следует руководствоваться следующими параметрами:
1. Длина ленты - чем больше длина, тем больший диаметр арматуры следует принимать).
2. Высота и ширина ленты - чем больше высота и ширина, тем меньший диаметр арматуры можно принимать.
3. Расчетные нагрузки - тут все просто, чем меньше нагрузки тем меньший диаметр арматуры можно принимать.
Тем не менее, чтобы все вышесказанное было более наглядно, представим себе следующую ситуацию: планируется ленточный фундамент (вместо фундаментной плиты), длина ленты по одной из наружных стен 8 м, высота 1 м и ширина 0.5 м, ширина подошвы фундамента 0.8 м высота подошвы 0.2 м.
Если под одной из наружных стен, например А3 (крайняя левая стена на рисунке 345.1.в) грунт в правом верхнем углу просядет сильнее, чем посредине, то в этом случае ленту фундамента под этой стеной можно рассматривать, как консольную балку длиной 4 м, соответственно потребуется армирование в верхней части ленты фундамента.
Рисунок 345.1. Примерный план 1 этажа для расчета фундаментной плиты.
Как мы уже выяснили, равномерно распределенная нагрузка на эту стену, составляет q = 6976 ≈ 7000 кг/м. Но это была нагрузка, равномерно распределенная как по фундаменту, так и по основанию, а при просадке основания нагрузка, действующая на консольную балку, будет описываться уравнением прогиба.
Чтобы упростить задачу, предположим, что эта дополнительная нагрузка описывается уравнением квадратной параболы, т.е. изменяется от максимума на конце до нуля на опоре. Тогда изгибающий момент на опоре составит:
М = (ql/3)3l/4 = ql2/4 = 7000·42/4 = 28000 кгс·м или 2800000 кгс·см
Примечание: в данном случае мы определили значение момента графоаналитическим методом, т.е. умножили площадь эпюры нагрузки на расстояние от центра тяжести эпюры до рассматриваемой точки - опоры балки.
Так как в данном случае лента фундамента представляет собой тавровую балку из-за наличия подошвы, то сначала нужно определить, где находится граница сжатой зоны:
M = 2800000 < Rbb'fh'f(ho - 0.5h'f) = 117·80·20(97 - 10) = 16286400
Это означает, что граница сжатой зоны находится в полке балки, тогда
am = M/b'fh30Rb = 2800000/(80·972·117) = 0.0318
Аs = Rbb'fho(1 - √1 - 2am)/Rs = 117·80·97(1 - √1 - 2·0.0318)/3600 = 8.15 см2
Примечание: если для упрощения расчетов данную балку рассматривать как прямоугольную шириной 0.5 м, то требуемая площадь сечения составит 8.23 см2, т.е. не намного больше.
Т.е. для армирования верхней зоны сечения ленты фундамента под рассматриваемой стеной в этом случае понадобится не менее 3 стержней Ø 20 мм, площадь сечения составит 9.41см2. Такие дела.
Примечание: если арматурные стержни будут и в нижней части сечения, т.е. в сжатой зоне, то их тоже можно учесть в расчетах. Впрочем это увеличит несущую способность балки на 3-5%, а у нас итак принята арматура с хорошим запасом.
Определение прогиба при такой нагрузке - отдельная сложная тема, но опять упростим задачу и предположим, что прогиб будет такой же (хотя в действительности прогиб будет немного меньше), как при равномерно изменяющейся нагрузке и составит (согласно расчетной схеме 2.6, таблицы 2):
f = 0.86·11ql4/120EI
где 0.86 - коэффициент учитывающий изменение высоты сжатой зоны сечения, который тоже требует более точного определения.
Начальный модуль упругости для бетона класса В20 составляет Е = 275000 кг/см2. Для определения момента инерции приведенного сечения следует решить кубическое уравнение, которое здесь не привожу. Скажу лишь, что граница сжатой области бетона будет проходить в ребре балки и потому момент инерции приведенного сечения будет составлять примерно I = 750000 см4.
При таких исходных данных максимальный прогиб составит:
f = 0.86·11·70·4004/(120·275000·750000) = 0.685 см
Это означает, что если осадка основания под этим углом будет даже незначительно больше, чем под серединой фундамента, то уже включится в работу арматура. А если разница достигнет 7 мм и больше, то арматура будет работать на полную мощность. Кроме того в материале стены появятся дополнительные растягивающие напряжения, для восприятия этих напряжений в стенах их натурального и искусственного камня обычно делается арматурный пояс по периметру.
А кроме того, наличие арматуры в фундаменте позволит соблюсти требования нормативных документов, в частности СНиП 2.02.01-83* "Основания зданий и сооружений", согласно которому относительная разность осадок по отношению к длине не должна превышать 0.002 для многоэтажных бескаркасных зданий с несущими стенами из крупных блоков или кирпича (согласно таблице 391.2).
В нашем случае Δs/L = 0.7/400 = 0.00175 < 0.002.
Тут может возникнуть вполне логичный вопрос, а что произойдет, если данный фундамент армирован 2 стержнями диаметром 12 мм в верхней зоне, согласно многочисленным рекомендациям?
Да в принципе ничего страшного не произойдет: лента фундамента окончательно треснет в наиболее напряженном поперечном сечении и после этого такую ленту можно рассматривать как 2 балки на упругом основании, лежащие рядом и несущая способность таких балок увеличится в несколько раз.
Вот только если разница просадок основания под углом и в середине будет увеличиваться, то будут расти и растягивающие напряжения в материале стены, а если никаких армирующих поясов при строительстве не было предусмотрено, то могут появиться и трещины на стенах.
Лента фундамента под примыкающей стеной в левом верхнем углу будет более длинной, около 12 м, однако и нагрузка на эту ленту почти в 2 раза меньше. Тем не менее, если и эту часть ленты фундамента рассматривать как консольную балку длиной 6 м высотой 1 м и шириной 0.5 м, то максимальный момент на опоре составит:
М = ql2/4 = 3600·62/4 = 32400 кгс·м или 3240000 кгс·см
Это в 1.16 раза больше, чем возможный изгибающий момент в примыкающей более нагруженной ленте. Если учесть, что мы приняли сечение арматуры с хорошим запасом (в 1.154 раза), и наличие арматуры в сжатой зоне, то этого должно хватить даже не смотря на то, что в данном случае у нас не тавровая, а обычная прямоугольная балка.
К тому же возможный прогиб такой балки при неравномерной осадке фундамента будет больше, а значит у балки появится дополнительная опора - лента фундамента примыкающей стены. Все это может немного увеличить нагрузку на ленту, рассмотренную нами ранее и уменьшить нагрузку на примыкающую ленту.
Ну а насколько подобная ситуация может быть вероятна - решать вам. Я же трещины на кирпичных стенах примерно посредине (часто в районе оконного проема) наблюдал неоднократно.
doctorlom.com